Near-Optimal Pseudorandom Generators for
Constant-Depth Read-Once Formulas

Dean Doron' Pooya Hatami? William M. Hoza3
UT Austin — Stanford UT Austin — Ohio State UT Austin
July 19
CCC 2019

ISupported by NSF Grant CCF-1705028
2Supp0|rted by a Simons Investigator Award (#409864, David Zuckerman)
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin
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Randomness as a scarce resource

» Randomization is a popular algorithmic technique
» But randomness is costly

> An algorithm that uses fewer random bits is better
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Pseudorandom generators (PRGs)

s bits Gen n bits
—

» Gen “fools” f:{0,1}" — {0,1} if
E[f(Gen(U))] =E[f(U)] ¢

» Goal: Design PRG that fools an interesting class of functions f

» Minimize seed length s = s(n,¢)
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Read-once formulas

» This work: Fool depth-d read-once formulas for d = O(1)

» Read-once version of AC°
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Prior work and main result

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log??+6 n) AC Nisan '91

5(Iog"ur4 n) AC® Trevisan, Xue '13

O(logt? n) Read-once AC Chen, Steinke, Vadhan '15
O(log? n) Wi(/;rhb_itor?g'gggps Forbes, Kelley '18
O(log n) Read-once AC This work

» Main result: PRG for read-once AC? with seed length

log(n/e) - O(d log log(n/e))??+2.
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Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”
» Main approach: Design optimal PRG for “ROBPs”

> Bad news: Seed length O(log? n) has not been improved for
decades [Nisan '92]

» Good news: Can achieve seed length 5(Iog n) for increasingly
powerful restricted models

> Read-once ACC is one of the frontiers of this progress
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Restriction notation

» Define Res: {0,1}" x {0,1}" — {0,1,%}" by

ify, =1

Res(y,z),-: * Iy
zi ify; =0
y 01100100
z= 00111101

Res(y,z)= 0 » x 1 1 » 0 1
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Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings
> Let X = Res(D, D) (seed length O(log n))
» Theorem [Forbes, Kelley '18]: For any O(1)-width ROBP f,

E [FIx(U)] ~ E[F(U)]

» In words, X preserves expectation of f

> (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])
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Forbes-Kelley pseudorandom generator

>

So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

After restricting, f|x is another ROBP

So we can apply another pseudorandom restriction

Let X°t denote composition of t independent copies of X
Let t = O(log n)

With high probability, X°* € {0,1}"  (no *)
Expectation preserved at every step, so total error is low:

E [F(X)] ~ E[F(U)

Total cost: O(log? n) truly random bits
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Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

A

&) ()

» Step 2: Fool restricted formula, taking advantage of simplicity
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Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

> Let's sample X € {0,1,x}" for depth d + 1

1. Recursively sample Gq4, G, € {0,1}"
2. Sample D, D" € {0,1}" with small bias
3. X =Res(Gg® D, G, & D)
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Preserving expectation

» Claim: For any depth-(d 4 1) read-once AC° formula f,

E [FIx(U)] ~ E[F(U)]

» Proof: Read-once AC? can be simulated by constant-width
ROBPs [CSV15]

» So we can simply apply Forbes-Kelley result:

X = Res(Gy® D, Gy & D)
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Simplification

> A(f) % maximum fan-in of any gate other than root
» Main Lemma: With high probability over X°t,
A(f|xot) < polylog n,
where t = O((log log n)?)

> Actually we only prove this statement “up to sandwiching”
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Simplification under truly random restrictions

> Let f be a read-once AC? formula

» Let R = Res(U, U’) (truly random restriction)

» Chen, Steinke, Vadhan '15 = W.h.p. over R°t,
A(f|get) < polylog n

» (In fact the simplification they show is more severe)

> Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis
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Derandomizing simplification

> Let f be a depth-(d — 1) read-once AC® formula

> Let b e {0,1}

» Computational problem: Given y,z € {0,1}", decide whether
f’Res(y,z) =b

» Lemma: Can be decided in depth-d read-once AC°



Deciding whether f|res(, ) = b

0(:}









Deciding whether f|gre(, ) = b (continued)

> At bottom, we get one additional layer:

(Res(y,z)i=b) < (yi=0Az =b)
(—Res(y,z)i=b) < (yi=0Azi=1-0Db)
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Collapse under pseudorandom restrictions

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}
> X =Res(Gy ® D, G, ® D")
> Gy, G fool depth d, so
If(r[f|x =b| ~ I7?r[f|R = b]
» Hybrid argument:

Pr[f|xot = b] = Pr[f|get = b
Prlflx |~ Priflr ]
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Bridging the gap fromd —1tod +1

» So far: Depth-(d — 1) formulas collapse with about the right
probability

» We were supposed to show that depth-(d + 1) formulas
simplify w.r.t. A w.h.p.
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|dea of proof that A — polylog n

These gates
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A = polylogn

» To recap, after t = O((log log n)?) restrictions, A = polylog n

» Total cost so far: O(log n) truly random bits
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Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL

> Best prior PRG: seed length O(log? n) [FK '18]

» Theorem: Our PRG fools read-once AC°[®] with seed length
O(t + log(n/<))

where t = # parity gates

> Fool read-once AC°[&] with seed length O(log(n/e))?

» Thanks! Questions?



