Near-Optimal Pseudorandom Generators for
Constant-Depth Read-Once Formulas

Dean Doron' Pooya Hatami? William M. Hoza3
UT Austin — Stanford UT Austin — Ohio State UT Austin
July 19
CCC 2019

ISupported by NSF Grant CCF-1705028
2Supp0|rted by a Simons Investigator Award (#409864, David Zuckerman)
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

Randomness as a scarce resource

» Randomization is a popular algorithmic technique

» But randomness is costly

Randomness as a scarce resource

» Randomization is a popular algorithmic technique
» But randomness is costly

> An algorithm that uses fewer random bits is better

Pseudorandom generators (PRGs)

Gen

-

n bits

Pseudorandom generators (PRGs)

s bits Gen n bits
—

» Gen “fools” f:{0,1}" — {0,1} if

E[f (Gen(U))] = E[f(U)] + ¢

Pseudorandom generators (PRGs)

s bits Gen n bits
—

» Gen “fools” f:{0,1}" — {0,1} if
E[f(Gen(U))] =E[f(U)] ¢

» Goal: Design PRG that fools an interesting class of functions f

Pseudorandom generators (PRGs)

s bits Gen n bits
—

» Gen “fools” f:{0,1}" — {0,1} if
E[f(Gen(U))] =E[f(U)] ¢

» Goal: Design PRG that fools an interesting class of functions f

» Minimize seed length s = s(n,¢)

Read-once formulas

Read-once formulas

» This work: Fool depth-d read-once formulas for d = O(1)

Read-once formulas

» This work: Fool depth-d read-once formulas for d = O(1)

» Read-once version of AC°

Prior work and main result

Seed length

Model fooled

Reference

O(n0.001)

ACO

Ajtai, Wigderson '89

Prior work and main result

Seed length Model fooled Reference
O(n0001) AC® Ajtai, Wigderson '89
O(log??+6 n) AC Nisan '91

Prior work and main result

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log?9*% n) AC’ Nisan '91

5(Iog"ur4 n) AC® Trevisan, Xue '13

Prior work and main result

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log?9*% n) AC’ Nisan '91

5(Iog"ur4 n) AC® Trevisan, Xue '13

O(log?*! n)

Read-once AC°

Chen, Steinke, Vadhan '15

Prior work and main result

width-O(1) ROBPs

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89
O(log?9*% n) AC’ Nisan '91
5(Iog"ur4 n) AC® Trevisan, Xue '13
O(logt? n) Read-once AC Chen, Steinke, Vadhan '15
O(log? n) Arbitrary-order Forbes, Kelley '18

Prior work and main result

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log??+6 n) AC Nisan '91

5(Iog"ur4 n) AC® Trevisan, Xue '13

O(logt? n) Read-once AC Chen, Steinke, Vadhan '15
O(log? n) Wi(/;rhb_itor?g'gggps Forbes, Kelley '18
O(log n) Read-once AC This work

Prior work and main result

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log??+6 n) AC Nisan '91

5(Iog"ur4 n) AC® Trevisan, Xue '13

O(logt? n) Read-once AC Chen, Steinke, Vadhan '15
O(log? n) Wi(/;rhb_itor?g'gggps Forbes, Kelley '18
O(log n) Read-once AC This work

» Main result: PRG for read-once AC? with seed length

log(n/e) - O(d log log(n/e))??+2.

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”

» Main approach: Design optimal PRG for “ROBPs”

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”
» Main approach: Design optimal PRG for “ROBPs”

> Bad news: Seed length O(log? n) has not been improved for
decades [Nisan '92]

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”
» Main approach: Design optimal PRG for “ROBPs”

> Bad news: Seed length O(log? n) has not been improved for
decades [Nisan '92]

» Good news: Can achieve seed length 5(Iog n) for increasingly
powerful restricted models

Motivation: L vs. BPL

» Big open problem: Prove L = BPL

» “Randomness is not necessary for space-efficient computation”
» Main approach: Design optimal PRG for “ROBPs”

> Bad news: Seed length O(log? n) has not been improved for
decades [Nisan '92]

» Good news: Can achieve seed length 5(Iog n) for increasingly
powerful restricted models

> Read-once ACC is one of the frontiers of this progress

Seed length 5(Iog n)

i\zArbitrary—order
poly(n)-ROBPs

/
ﬁpoly(n)-ROBPs / T Read-once

) formulas
Arbitrary-order

/ O(1)}-ROBPs —__ Read-once
AC?
)-ROBPs (]
Arbitrary-order Read-once
3-ROBPs AC?
MRT19 This work
3-ROBPs
MRT19
Read-once
Arbitrary-order Read-once CNFs

2-ROBPs

| ial DETT10
Regular Arbitrary-order 5705 po {:/Olr;la °
O(1)-ROBPs permutation
BRRY14 0(1)-ROBPs

CHHL18

2-ROBPs

Parities Conjunctions

NN93 NN93

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log®9*% n) AC’ Nisan '91

O(log?** n) AC® Trevisan, Xue '13

O(log?*! n) Read-once AC® Chen, Steinke, Vadhan '15
O(log? n) Wigrhb_ig?g_gggps Forbes, Kelley '18
O(log n) Read-once AC® This work

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference
O(n0-001) AC® Ajtai, Wigderson '89

O(log??+6 n) AC° Nisan '91

O(log?** n) AC® Trevisan, Xue '13

O(logt? n) Read-once AC° Chen, Steinke, Vadhan '15
O(log? n) wi('ia\trk:)-itOr?g_oRrgeBrPs Forbes, Kelley '18
O(log n) Read-once AC This work

PRGs via pseudorandom restrictions [AW89]

PRGs via pseudorandom restrictions [AW89]

» Start by sampling a pseudorandom restriction X € {0, 1, x}"

PRGs via pseudorandom restrictions [AW89]

» Start by sampling a pseudorandom restriction X € {0, 1, x}"

Restriction notation

» Define Res: {0,1}" x {0,1}" — {0,1,%}" by

* ify,':].

Res(y, z); = {

Zj ify,-:0

Restriction notation

» Define Res: {0,1}" x {0,1}" — {0,1,%}" by

ify, =1

Res(y,z),-: * Iy
zi ify; =0
y 01100100
z= 00111101

Res(y,z)= 0 » x 1 1 » 0 1

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings

> Let X = Res(D, D) (seed length O(log n))

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings
> Let X = Res(D, D) (seed length O(log n))
» Theorem [Forbes, Kelley '18]: For any O(1)-width ROBP f,

E [FIx(U)] ~ E[F(U)]

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings
> Let X = Res(D, D) (seed length O(log n))
» Theorem [Forbes, Kelley '18]: For any O(1)-width ROBP f,

E [FIx(U)] ~ E[F(U)]

» In words, X preserves expectation of f

Forbes-Kelley pseudorandom restriction

» A distribution D over {0,1}" is e-biased if it fools parities:

Do

ieS

S0 — |E <e

1
2

» Let D, D’ be independent small-bias strings
> Let X = Res(D, D) (seed length O(log n))
» Theorem [Forbes, Kelley '18]: For any O(1)-width ROBP f,

E [FIx(U)] ~ E[F(U)]

» In words, X preserves expectation of f

> (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

» After restricting, f|x is another ROBP

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

» After restricting, f|x is another ROBP

» So we can apply another pseudorandom restriction

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

» After restricting, f|x is another ROBP
» So we can apply another pseudorandom restriction

» Let X°! denote composition of t independent copies of X

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

» After restricting, f|x is another ROBP
» So we can apply another pseudorandom restriction
» Let X°! denote composition of t independent copies of X

» Let t = O(log n)

Forbes-Kelley pseudorandom generator

» So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

» After restricting, f|x is another ROBP

» So we can apply another pseudorandom restriction

» Let X°! denote composition of t independent copies of X
» Let t = O(logn)

» With high probability, X°* € {0,1}" (no *)

Forbes-Kelley pseudorandom generator

>

So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

After restricting, f|x is another ROBP

So we can apply another pseudorandom restriction

Let X°t denote composition of t independent copies of X
Let t = O(log n)

With high probability, X°* € {0,1}" (no *)
Expectation preserved at every step, so total error is low:

E [F(X)] ~ E[F(U)

Forbes-Kelley pseudorandom generator

>

So [FK18] can assign values to half the inputs using 5(Iog n)
truly random bits

After restricting, f|x is another ROBP

So we can apply another pseudorandom restriction

Let X°t denote composition of t independent copies of X
Let t = O(log n)

With high probability, X°* € {0,1}" (no *)
Expectation preserved at every step, so total error is low:

E [F(X)] ~ E[F(U)

Total cost: O(log? n) truly random bits

Improved PRGs via simplification [GMRTV12]

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

A

&) ()

Improved PRGs via simplification [GMRTV12]
» Step 1: Apply pseudorandom restriction X € {0, 1,x}"

P> Design X to preserve expectation

» Design X so that X°t also simplifies formula, for t < logn

A

&) ()

» Step 2: Fool restricted formula, taking advantage of simplicity

Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

> Let's sample X € {0,1,x}" for depth d + 1

Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

> Let's sample X € {0,1,x}" for depth d + 1

1. Recursively sample Gq4, G, € {0,1}"

Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

> Let's sample X € {0,1,x}" for depth d + 1

1. Recursively sample Gq4, G, € {0,1}"
2. Sample D, D" € {0,1}" with small bias

Our pseudorandom restriction

» Assume by recursion: PRG for depth d with seed length
O(log n)

> Let's sample X € {0,1,x}" for depth d + 1

1. Recursively sample Gq4, G, € {0,1}"
2. Sample D, D" € {0,1}" with small bias
3. X =Res(Gg® D, G, & D)

Preserving expectation

» Claim: For any depth-(d 4 1) read-once AC° formula f,

E [FIx(U)] ~ E[F(U)]

Preserving expectation

» Claim: For any depth-(d 4 1) read-once AC° formula f,

E [FIx(U)] ~ E[F(U)]

» Proof: Read-once AC? can be simulated by constant-width
ROBPs [CSV15]

Preserving expectation

» Claim: For any depth-(d 4 1) read-once AC° formula f,

E [FIx(U)] ~ E[F(U)]

» Proof: Read-once AC? can be simulated by constant-width
ROBPs [CSV15]

» So we can simply apply Forbes-Kelley result:

X = Res(Gy® D, Gy & D)

Simplification

def . .
» A(f) = maximum fan-in of any gate other than root

Simplification

> A(f) % maximum fan-in of any gate other than root
» Main Lemma: With high probability over X°t,
A(f|xot) < polylog n,

where t = O((log log n)?)

Simplification

> A(f) % maximum fan-in of any gate other than root
» Main Lemma: With high probability over X°t,
A(f|xot) < polylog n,
where t = O((log log n)?)

> Actually we only prove this statement “up to sandwiching”

Simplification under truly random restrictions

» Let f be a read-once AC° formula

Simplification under truly random restrictions

» Let f be a read-once AC° formula

» Let R = Res(U, U’) (truly random restriction)

Simplification under truly random restrictions

» Let f be a read-once AC° formula
» Let R = Res(U, U’) (truly random restriction)
» Chen, Steinke, Vadhan '15 = W.h.p. over R°t,

A(f|get) < polylogn

Simplification under truly random restrictions

> Let f be a read-once AC? formula

» Let R = Res(U, U’) (truly random restriction)

» Chen, Steinke, Vadhan '15 = W.h.p. over R°t,
A(f|get) < polylog n

» (In fact the simplification they show is more severe)

Simplification under truly random restrictions

> Let f be a read-once AC? formula

» Let R = Res(U, U’) (truly random restriction)

» Chen, Steinke, Vadhan '15 = W.h.p. over R°t,
A(f|get) < polylog n

» (In fact the simplification they show is more severe)

> Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Derandomizing simplification

> Let f be a depth-(d — 1) read-once AC? formula

Derandomizing simplification

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}

Derandomizing simplification

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}
» Computational problem: Given y,z € {0,1}", decide whether

f’Res(y,z) =b

Derandomizing simplification

> Let f be a depth-(d — 1) read-once AC® formula

> Let b e {0,1}

» Computational problem: Given y,z € {0,1}", decide whether
f’Res(y,z) =b

» Lemma: Can be decided in depth-d read-once AC°

Deciding whether f|res(,) = b

0(:}

Deciding whether f|gre(,) = b (continued)

> At bottom, we get one additional layer:

(Res(y,z)i=b) < (yi=0Az =b)
(—Res(y,z)i=b) < (yi=0Azi=1-0Db)

Collapse under pseudorandom restrictions

> Let f be a depth-(d — 1) read-once AC? formula

> Let b e {0,1}

Collapse under pseudorandom restrictions

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}

» X =Res(Gg @ D,G, @ D)

Collapse under pseudorandom restrictions

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}

> X =Res(Gy ® D, G, ® D")

> Gy, G fool depth d, so

Pr[f|x = b] = Pr[f|r =
flx = b] = Prif|g = b]

Collapse under pseudorandom restrictions

> Let f be a depth-(d — 1) read-once AC? formula
> Let b e {0,1}
> X =Res(Gy ® D, G, ® D")
> Gy, G fool depth d, so
If(r[f|x =b| ~ I7?r[f|R = b]
» Hybrid argument:

Pr[f|xot = b] = Pr[f|get = b
Prlflx |~ Priflr]

Bridging the gap fromd —1tod +1

» So far: Depth-(d — 1) formulas collapse with about the right
probability

Bridging the gap fromd —1tod +1

» So far: Depth-(d — 1) formulas collapse with about the right
probability

» We were supposed to show that depth-(d + 1) formulas
simplify w.r.t. A w.h.p.

|dea of proof that A — polylog n

Total depth d +1

|dea of proof that A — polylog n

These gates Total depth d +1

collapsing... “

/

\

|
!

|
|

|
|

!
|

!
|

|dea of proof that A — polylog n

These gates
collapsing...

- ——— ==~

Total depth d +1

...corresponds to
these gates having

“ few children

- -

A = polylogn

» To recap, after t = O((log log n)?) restrictions, A = polylog n

A = polylogn

» To recap, after t = O((log log n)?) restrictions, A = polylog n

A = polylogn

» To recap, after t = O((log log n)?) restrictions, A = polylog n

» Total cost so far: O(log n) truly random bits

Final step: MRT PRG

» Theorem (Meka,NReingold, Tal '19): There is an explicit PRG
with seed length O(log(n/¢)) that fools functions of the form

Final step: MRT PRG

> Theorem (Meka, Reingold, Tal '19): There is an explicit PRG
with seed length O(log(n/¢)) that fools functions of the form

where fi,..., fy are on disjoint variables and f; can be
computed by an ROBP with width O(1), length polylog n

Final step: MRT PRG

> Theorem (Meka, Reingold, Tal '19): There is an explicit PRG
with seed length O(log(n/¢)) that fools functions of the form

f=EP,
i=1
where fi,..., fy are on disjoint variables and f; can be

computed by an ROBP with width O(1), length polylog n

> (Proof uses GMRTYV approach, building on [GY14, CHRT18, Vio09])

Final step: MRT PRG

> Theorem (Meka, Reingold, Tal '19): There is an explicit PRG
with seed length O(log(n/¢)) that fools functions of the form

where fi,..., fy are on disjoint variables and f; can be
computed by an ROBP with width O(1), length polylog n

> (Proof uses GMRTYV approach, building on [GY14, CHRT18, Vio09])

» In our case,

Final step: MRT PRG

> Theorem (Meka, Reingold, Tal '19): There is an explicit PRG
with seed length O(log(n/¢)) that fools functions of the form

where fi,..., fy are on disjoint variables and f; can be
computed by an ROBP with width O(1), length polylog n

> (Proof uses GMRTYV approach, building on [GY14, CHRT18, Vio09])

» In our case,

Directions for further research

Directions for further research

i\zArbitrary—order
poly(n)-ROBPs

/
ﬁpoly(n)-ROBPs / T Read-once

) formulas
Arbitrary-order

O(1)-ROBPs
/ Read-once
O(1)-ROBPs AC[@]
Arbitrary-order Read-once
3-ROBPs AC?
MRT19 This work
3-ROBPs
MRT19
Read-once
Arbitrary-order Read-once CNFs

2-ROBPs

| ial DETT10
Regular Arbitrary-order 5705 po {:/Olr;la °
O(1)-ROBPs permutation
BRRY14 O(1)-ROBPs

CHHL18

2-ROBPs

Parities Conjunctions

NN93 NN93

Directions for further research

i\zArbitrary—order
poly(n)-ROBPs

/
ﬁpoly(n)-ROBPs / T Read-once

) formulas
Arbitrary-order

O(1)-ROBPs
/ Read-once
O(1)-ROBPs AC[@]
Arbitrary-order Read-once
3-ROBPs AC?
MRT19 This work
3-ROBPs
MRT19
Read-once
Arbitrary-order Read-once CNFs

2-ROBPs

| ial DETT10
Regular Arbitrary-order 5705 po {:/Olr;la °
O(1)-ROBPs permutation
BRRY14 O(1)-ROBPs

CHHL18

2-ROBPs

Parities Conjunctions

NN93 NN93

Read-once AC°[@]

Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL

Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL

> Best prior PRG: seed length O(log? n) [FK '18]

Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL
> Best prior PRG: seed length O(log? n) [FK '18]
» Theorem: Our PRG fools read-once AC°[®] with seed length

O(t + log(n/¢))

where t = # parity gates

Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL

> Best prior PRG: seed length O(log? n) [FK '18]

» Theorem: Our PRG fools read-once AC°[®] with seed length
O(t + log(n/<))

where t = # parity gates

> Fool read-once AC°[&] with seed length O(log(n/e))?

Fooling read-once AC°[@)]

» Natural next step toward derandomizing BPL

> Best prior PRG: seed length O(log? n) [FK '18]

» Theorem: Our PRG fools read-once AC°[®] with seed length
O(t + log(n/<))

where t = # parity gates

> Fool read-once AC°[&] with seed length O(log(n/e))?

» Thanks! Questions?

