
Near-Optimal Pseudorandom Generators for
Constant-Depth Read-Once Formulas

Dean Doron1

UT Austin → Stanford

Pooya Hatami2

UT Austin → Ohio State

William M. Hoza3

UT Austin

July 19
CCC 2019

1
Supported by NSF Grant CCF-1705028

2
Supported by a Simons Investigator Award (#409864, David Zuckerman)

3
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

Randomness as a scarce resource

I Randomization is a popular algorithmic technique

I But randomness is costly

I An algorithm that uses fewer random bits is better

Randomness as a scarce resource

I Randomization is a popular algorithmic technique

I But randomness is costly

I An algorithm that uses fewer random bits is better

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Seed length Õ(log n)

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

Restriction notation

I Define Res : {0, 1}n × {0, 1}n → {0, 1, ?}n by

Res(y , z)i =

{
? if yi = 1

zi if yi = 0

y = 0 1 1 0 0 1 0 0
z = 0 0 1 1 1 1 0 1

Res(y , z) = 0 ? ? 1 1 ? 0 1

Restriction notation

I Define Res : {0, 1}n × {0, 1}n → {0, 1, ?}n by

Res(y , z)i =

{
? if yi = 1

zi if yi = 0

y = 0 1 1 0 0 1 0 0
z = 0 0 1 1 1 1 0 1

Res(y , z) = 0 ? ? 1 1 ? 0 1

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ 0∧ 0 ∧ 0

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧∧ ∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∧∧ ∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

Simplification under truly random restrictions

I Let f be a read-once AC0 formula

I Let R = Res(U,U ′) (truly random restriction)

I Chen, Steinke, Vadhan ’15 =⇒ W.h.p. over R◦t ,

∆(f |R◦t) ≤ polylog n

I (In fact the simplification they show is more severe)

I Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Simplification under truly random restrictions

I Let f be a read-once AC0 formula

I Let R = Res(U,U ′) (truly random restriction)

I Chen, Steinke, Vadhan ’15 =⇒ W.h.p. over R◦t ,

∆(f |R◦t) ≤ polylog n

I (In fact the simplification they show is more severe)

I Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Simplification under truly random restrictions

I Let f be a read-once AC0 formula

I Let R = Res(U,U ′) (truly random restriction)

I Chen, Steinke, Vadhan ’15 =⇒ W.h.p. over R◦t ,

∆(f |R◦t) ≤ polylog n

I (In fact the simplification they show is more severe)

I Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Simplification under truly random restrictions

I Let f be a read-once AC0 formula

I Let R = Res(U,U ′) (truly random restriction)

I Chen, Steinke, Vadhan ’15 =⇒ W.h.p. over R◦t ,

∆(f |R◦t) ≤ polylog n

I (In fact the simplification they show is more severe)

I Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Simplification under truly random restrictions

I Let f be a read-once AC0 formula

I Let R = Res(U,U ′) (truly random restriction)

I Chen, Steinke, Vadhan ’15 =⇒ W.h.p. over R◦t ,

∆(f |R◦t) ≤ polylog n

I (In fact the simplification they show is more severe)

I Again, these statements are true “up to sandwiching.” Proof uses Fourier analysis

Derandomizing simplification

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}
I Computational problem: Given y , z ∈ {0, 1}n, decide whether

f |Res(y ,z) ≡ b

I Lemma: Can be decided in depth-d read-once AC0

Derandomizing simplification

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}

I Computational problem: Given y , z ∈ {0, 1}n, decide whether

f |Res(y ,z) ≡ b

I Lemma: Can be decided in depth-d read-once AC0

Derandomizing simplification

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}
I Computational problem: Given y , z ∈ {0, 1}n, decide whether

f |Res(y ,z) ≡ b

I Lemma: Can be decided in depth-d read-once AC0

Derandomizing simplification

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}
I Computational problem: Given y , z ∈ {0, 1}n, decide whether

f |Res(y ,z) ≡ b

I Lemma: Can be decided in depth-d read-once AC0

Deciding whether f |Res(y ,z) ≡ b

∧

a cb

≡ 0 ⇐⇒

∨

b ≡ 0a ≡ 0 c ≡ 0

∨

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 0a′ ≡ 0 c ′ ≡ 0

Deciding whether f |Res(y ,z) ≡ b

∧

a cb

≡ 0 ⇐⇒
∨

b ≡ 0a ≡ 0 c ≡ 0

∨

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 0a′ ≡ 0 c ′ ≡ 0

Deciding whether f |Res(y ,z) ≡ b

∧

a cb

≡ 0 ⇐⇒
∨

b ≡ 0a ≡ 0 c ≡ 0

∨

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 0a′ ≡ 0 c ′ ≡ 0

Deciding whether f |Res(y ,z) ≡ b (continued)

I At bottom, we get one additional layer:

(Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = b)

(¬Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = 1− b)

Collapse under pseudorandom restrictions

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[f |X ≡ b] ≈ Pr
R

[f |R ≡ b]

I Hybrid argument:

Pr
X◦t

[f |X◦t ≡ b] ≈ Pr
R◦t

[f |R◦t ≡ b]

Collapse under pseudorandom restrictions

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[f |X ≡ b] ≈ Pr
R

[f |R ≡ b]

I Hybrid argument:

Pr
X◦t

[f |X◦t ≡ b] ≈ Pr
R◦t

[f |R◦t ≡ b]

Collapse under pseudorandom restrictions

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[f |X ≡ b] ≈ Pr
R

[f |R ≡ b]

I Hybrid argument:

Pr
X◦t

[f |X◦t ≡ b] ≈ Pr
R◦t

[f |R◦t ≡ b]

Collapse under pseudorandom restrictions

I Let f be a depth-(d − 1) read-once AC0 formula

I Let b ∈ {0, 1}

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[f |X ≡ b] ≈ Pr
R

[f |R ≡ b]

I Hybrid argument:

Pr
X◦t

[f |X◦t ≡ b] ≈ Pr
R◦t

[f |R◦t ≡ b]

Bridging the gap from d − 1 to d + 1

I So far: Depth-(d − 1) formulas collapse with about the right
probability

I We were supposed to show that depth-(d + 1) formulas
simplify w.r.t. ∆ w.h.p.

Bridging the gap from d − 1 to d + 1

I So far: Depth-(d − 1) formulas collapse with about the right
probability

I We were supposed to show that depth-(d + 1) formulas
simplify w.r.t. ∆ w.h.p.

Idea of proof that ∆ 7→ polylog n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

∨ ∨ ∨ ∨∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨∨

These gates
collapsing...

...corresponds to
these gates having
few children

Total depth d + 1

Idea of proof that ∆ 7→ polylog n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

∨ ∨ ∨ ∨∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨∨

These gates
collapsing...

...corresponds to
these gates having
few children

Total depth d + 1

Idea of proof that ∆ 7→ polylog n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

∨ ∨ ∨ ∨∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨∨

These gates
collapsing...

...corresponds to
these gates having
few children

Total depth d + 1

∆ = polylog n

I To recap, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

∆ = polylog n

I To recap, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

∆ = polylog n

I To recap, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi =
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
polynomials

LV17

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Read-once AC0[⊕]

⊕

∨ ∨∧

∨ ⊕⊕ ⊕ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

