Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas

 $\begin{array}{c} \mathsf{Dean} \; \mathsf{Doron}^1 \\ \mathsf{UT} \; \mathsf{Austin} \; \to \; \mathsf{Stanford} \end{array}$

Pooya Hatami²
UT Austin \rightarrow Ohio State

William M. Hoza³ UT Austin

July 19 CCC 2019

¹Supported by NSF Grant CCF-1705028

²Supported by a Simons Investigator Award (#409864, David Zuckerman)

³Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

Randomness as a scarce resource

- ▶ Randomization is a popular algorithmic technique
- ► But randomness is costly

Randomness as a scarce resource

- ► Randomization is a popular algorithmic technique
- ▶ But randomness is costly
- ► An algorithm that uses fewer random bits is better

▶ Gen "fools" $f: \{0,1\}^n \rightarrow \{0,1\}$ if

$$\mathbb{E}[f(\mathsf{Gen}(\mathit{U}))] = \mathbb{E}[f(\mathit{U})] \pm \varepsilon$$

▶ Gen "fools" $f: \{0,1\}^n \rightarrow \{0,1\}$ if

$$\mathbb{E}[f(\mathsf{Gen}(\mathit{U}))] = \mathbb{E}[f(\mathit{U})] \pm \varepsilon$$

► Goal: Design PRG that fools an interesting class of functions *f*

▶ Gen "fools" $f: \{0,1\}^n \rightarrow \{0,1\}$ if

$$\mathbb{E}[f(\mathsf{Gen}(\mathit{U}))] = \mathbb{E}[f(\mathit{U})] \pm \varepsilon$$

- ► Goal: Design PRG that fools an interesting class of functions *f*
- ▶ Minimize seed length $s = s(n, \varepsilon)$

Read-once formulas

Read-once formulas

▶ This work: Fool depth-d read-once formulas for d = O(1)

Read-once formulas

- ▶ This work: Fool depth-d read-once formulas for d = O(1)
- Read-once version of AC⁰

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC ⁰	Ajtai, Wigderson '89

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC ⁰	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC ⁰	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC ⁰	Trevisan, Xue '13

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC ⁰	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC ⁰	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC ⁰	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC ⁰	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15
$\widetilde{O}(\log^2 n)$	Arbitrary-order width- $O(1)$ ROBPs	Forbes, Kelley '18

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC^0	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC ⁰	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15
$\widetilde{O}(\log^2 n)$	Arbitrary-order width- $O(1)$ ROBPs	Forbes, Kelley '18
$\widetilde{O}(\log n)$	Read-once AC ⁰	This work

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC^0	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC^0	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC^0	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15
$\widetilde{O}(\log^2 n)$	Arbitrary-order width- $O(1)$ ROBPs	Forbes, Kelley '18
$\widetilde{O}(\log n)$	Read-once AC ⁰	This work

▶ Main result: PRG for read-once **AC**⁰ with seed length

$$\log(n/\varepsilon) \cdot O(d \log \log(n/\varepsilon))^{2d+2}.$$

▶ Big open problem: Prove **L** = **BPL**

- ▶ Big open problem: Prove **L** = **BPL**
 - "Randomness is not necessary for space-efficient computation"

- ▶ Big open problem: Prove **L** = **BPL**
 - "Randomness is not necessary for space-efficient computation"
- Main approach: Design optimal PRG for "ROBPs"

- ▶ Big open problem: Prove L = BPL
 - "Randomness is not necessary for space-efficient computation"
- Main approach: Design optimal PRG for "ROBPs"
- ▶ Bad news: Seed length O(log² n) has not been improved for decades [Nisan '92]

- ▶ Big open problem: Prove L = BPL
 - "Randomness is not necessary for space-efficient computation"
- Main approach: Design optimal PRG for "ROBPs"
- ▶ Bad news: Seed length O(log² n) has not been improved for decades [Nisan '92]
- ▶ Good news: Can achieve seed length $O(\log n)$ for increasingly powerful restricted models

- ▶ Big open problem: Prove L = BPL
 - "Randomness is not necessary for space-efficient computation"
- Main approach: Design optimal PRG for "ROBPs"
- ▶ Bad news: Seed length O(log² n) has not been improved for decades [Nisan '92]
- ▶ Good news: Can achieve seed length $\widetilde{O}(\log n)$ for increasingly powerful restricted models
- ► Read-once **AC**⁰ is one of the frontiers of this progress

Seed length $\widetilde{O}(\log n)$

Starting point: Forbes-Kelley PRG

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC^0	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC^0	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC^0	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15
$\widetilde{O}(\log^2 n)$	Arbitrary-order width- $O(1)$ ROBPs	Forbes, Kelley '18
$\widetilde{O}(\log n)$	Read-once AC ⁰	This work

Starting point: Forbes-Kelley PRG

Seed length	Model fooled	Reference
$O(n^{0.001})$	AC^0	Ajtai, Wigderson '89
$O(\log^{2d+6} n)$	AC ⁰	Nisan '91
$\widetilde{O}(\log^{d+4} n)$	AC ⁰	Trevisan, Xue '13
$\widetilde{O}(\log^{d+1} n)$	Read-once AC ⁰	Chen, Steinke, Vadhan '15
$\widetilde{O}(\log^2 n)$	Arbitrary-order width- $O(1)$ ROBPs	Forbes, Kelley '18
$\widetilde{O}(\log n)$	Read-once AC ⁰	This work

PRGs via pseudorandom restrictions [AW89]

PRGs via pseudorandom restrictions [AW89]

lacktriangle Start by sampling a pseudorandom restriction $X \in \{0,1,\star\}^n$

PRGs via pseudorandom restrictions [AW89]

▶ Start by sampling a pseudorandom restriction $X \in \{0, 1, \star\}^n$

Restriction notation

▶ Define Res: $\{0,1\}^n \times \{0,1\}^n \to \{0,1,\star\}^n$ by

$$\operatorname{Res}(y,z)_i = \begin{cases} \star & \text{if } y_i = 1\\ z_i & \text{if } y_i = 0 \end{cases}$$

Restriction notation

▶ Define Res: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1,\star\}^n$ by

$$Res(y, z)_i = \begin{cases} \star & \text{if } y_i = 1\\ z_i & \text{if } y_i = 0 \end{cases}$$

$$y = 0 1 1 0 0 1 0 0$$

 $z = 0 0 1 1 1 1 0 1$

$$Res(y,z) = 0 \star \star 1 1 \star 0 1$$

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left| \bigoplus_{i \in S} D_i \right| - \frac{1}{2} \right| \leq \varepsilon$$

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left| \bigoplus_{i \in S} D_i \right| - \frac{1}{2} \right| \le \varepsilon$$

Let D, D' be independent small-bias strings

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left| \bigoplus_{i \in S} D_i \right| - \frac{1}{2} \right| \le \varepsilon$$

- ▶ Let D, D' be independent small-bias strings
- Let X = Res(D, D') (seed length $\widetilde{O}(\log n)$)

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left[\bigoplus_{i \in S} D_i \right] - \frac{1}{2} \right| \leq \varepsilon$$

- Let D, D' be independent small-bias strings
- Let X = Res(D, D') (seed length $\widetilde{O}(\log n)$)
- **Theorem** [Forbes, Kelley '18]: For any O(1)-width ROBP f,

$$\mathop{\mathbb{E}}_{X,U}[f|_X(U)] \approx \mathop{\mathbb{E}}_{U}[f(U)]$$

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left[\bigoplus_{i \in S} D_i \right] - \frac{1}{2} \right| \leq \varepsilon$$

- Let D, D' be independent small-bias strings
- Let X = Res(D, D') (seed length $O(\log n)$)
- ▶ **Theorem** [Forbes, Kelley '18]: For any O(1)-width ROBP f,

$$\mathop{\mathbb{E}}_{X,U}[f|_X(U)] \approx \mathop{\mathbb{E}}_{U}[f(U)]$$

► In words, *X* preserves expectation of *f*

Forbes-Kelley pseudorandom restriction

▶ A distribution D over $\{0,1\}^n$ is ε -biased if it fools parities:

$$S \neq \varnothing \implies \left| \mathbb{E} \left[\bigoplus_{i \in S} D_i \right] - \frac{1}{2} \right| \leq \varepsilon$$

- Let D, D' be independent small-bias strings
- Let X = Res(D, D') (seed length $O(\log n)$)
- ▶ **Theorem** [Forbes, Kelley '18]: For any O(1)-width ROBP f,

$$\mathbb{E}_{X,U}[f|_X(U)] \approx \mathbb{E}_U[f(U)]$$

- ► In words, X preserves expectation of f
- Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

▶ So [FK18] can assign values to half the inputs using $\widetilde{O}(\log n)$ truly random bits

- ► So [FK18] can assign values to half the inputs using $\widetilde{O}(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction
- Let $X^{\circ t}$ denote composition of t independent copies of X

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction
- Let $X^{\circ t}$ denote composition of t independent copies of X
- $\blacktriangleright \text{ Let } t = O(\log n)$

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction
- Let $X^{\circ t}$ denote composition of t independent copies of X
- $\blacktriangleright \text{ Let } t = O(\log n)$
- ▶ With high probability, $X^{\circ t} \in \{0,1\}^n$ (no *)

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction
- Let $X^{\circ t}$ denote composition of t independent copies of X
- $\blacktriangleright \text{ Let } t = O(\log n)$
- ▶ With high probability, $X^{\circ t} \in \{0,1\}^n$ (no *)
- Expectation preserved at every step, so total error is low:

$$\underset{X \circ t}{\mathbb{E}}[f(X^{\circ t})] \approx \underset{U}{\mathbb{E}}[f(U)]$$

- So [FK18] can assign values to half the inputs using $O(\log n)$ truly random bits
- \blacktriangleright After restricting, $f|_X$ is another ROBP
- ► So we can apply another pseudorandom restriction
- Let $X^{\circ t}$ denote composition of t independent copies of X
- $\blacktriangleright \text{ Let } t = O(\log n)$
- ▶ With high probability, $X^{\circ t} \in \{0,1\}^n$ (no *)
- Expectation preserved at every step, so total error is low:

$$\underset{X^{\circ t}}{\mathbb{E}}[f(X^{\circ t})] \approx \underset{U}{\mathbb{E}}[f(U)]$$

► Total cost: $\widetilde{O}(\log^2 n)$ truly random bits

▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$

▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

- ▶ Step 1: Apply pseudorandom restriction $X \in \{0, 1, \star\}^n$
- ▶ Design *X* to preserve expectation
- ▶ Design X so that $X^{\circ t}$ also simplifies formula, for $t \ll \log n$

Step 2: Fool restricted formula, taking advantage of simplicity

Assume by recursion: PRG for depth d with seed length $\widetilde{O}(\log n)$

- Assume by recursion: PRG for depth d with seed length $\widetilde{O}(\log n)$
- Let's sample $X \in \{0, 1, \star\}^n$ for depth d+1

- Assume by recursion: PRG for depth d with seed length $\widetilde{O}(\log n)$
- Let's sample $X \in \{0, 1, \star\}^n$ for depth d+1

1. Recursively sample $G_d, G_d' \in \{0,1\}^n$

- Assume by recursion: PRG for depth d with seed length $\widetilde{O}(\log n)$
- ▶ Let's sample $X \in \{0, 1, \star\}^n$ for depth d + 1

- 1. Recursively sample $G_d, G'_d \in \{0,1\}^n$
- 2. Sample $D, D' \in \{0,1\}^n$ with small bias

- Assume by recursion: PRG for depth d with seed length $\widetilde{O}(\log n)$
- ▶ Let's sample $X \in \{0, 1, \star\}^n$ for depth d + 1

- 1. Recursively sample $G_d, G'_d \in \{0,1\}^n$
- 2. Sample $D, D' \in \{0,1\}^n$ with small bias
- 3. $X = \text{Res}(G_d \oplus D, G'_d \oplus D')$

Preserving expectation

▶ Claim: For any depth-(d+1) read-once AC^0 formula f,

$$\mathop{\mathbb{E}}_{X,U}[f|_X(U)] \approx \mathop{\mathbb{E}}_{U}[f(U)]$$

Preserving expectation

▶ Claim: For any depth-(d+1) read-once AC^0 formula f,

$$\mathop{\mathbb{E}}_{X,U}[f|_X(U)] \approx \mathop{\mathbb{E}}_{U}[f(U)]$$

▶ Proof: Read-once AC⁰ can be simulated by constant-width ROBPs [CSV15]

Preserving expectation

▶ Claim: For any depth-(d+1) read-once AC^0 formula f,

$$\mathop{\mathbb{E}}_{X,U}[f|_X(U)] \approx \mathop{\mathbb{E}}_{U}[f(U)]$$

- ▶ **Proof**: Read-once **AC**⁰ can be simulated by constant-width ROBPs [CSV15]
- So we can simply apply Forbes-Kelley result:

$$X = \operatorname{Res}(G_d \oplus D, G'_d \oplus D')$$

Simplification

 $ightharpoonup \Delta(f) \stackrel{\mathsf{def}}{=} \mathsf{maximum} \mathsf{ fan-in} \mathsf{ of} \mathsf{ any} \mathsf{ gate} \mathsf{ other} \mathsf{ than} \mathsf{ root}$

Simplification

- $ightharpoonup \Delta(f) \stackrel{\text{def}}{=} \text{maximum fan-in of any gate other than root}$
- ▶ Main Lemma: With high probability over $X^{\circ t}$,

$$\Delta(f|_{X^{\circ t}}) \leq \operatorname{polylog} n$$
,

where
$$t = O((\log \log n)^2)$$

Simplification

- $ightharpoonup \Delta(f) \stackrel{\text{def}}{=}$ maximum fan-in of any gate other than root
- ▶ Main Lemma: With high probability over $X^{\circ t}$,

$$\Delta(f|_{X^{\circ t}}) \leq \operatorname{polylog} n$$
,

where
$$t = O((\log \log n)^2)$$

Actually we only prove this statement "up to sandwiching"

▶ Let f be a read-once AC^0 formula

- Let f be a read-once AC^0 formula
- ▶ Let R = Res(U, U') (truly random restriction)

- Let f be a read-once AC^0 formula
- ▶ Let R = Res(U, U') (truly random restriction)
- ▶ Chen, Steinke, Vadhan '15 \implies W.h.p. over $R^{\circ t}$,

$$\Delta(f|_{R^{\circ t}}) \leq \operatorname{polylog} n$$

- Let f be a read-once AC^0 formula
- ▶ Let R = Res(U, U') (truly random restriction)
- ▶ Chen, Steinke, Vadhan '15 \implies W.h.p. over $R^{\circ t}$,

$$\Delta(f|_{R^{\circ t}}) \leq \operatorname{polylog} n$$

▶ (In fact the simplification they show is more severe)

- Let f be a read-once AC^0 formula
- ▶ Let R = Res(U, U') (truly random restriction)
- ▶ Chen, Steinke, Vadhan '15 \implies W.h.p. over $R^{\circ t}$,

$$\Delta(f|_{R^{\circ t}}) \leq \operatorname{polylog} n$$

- (In fact the simplification they show is more severe)
- Again, these statements are true "up to sandwiching." Proof uses Fourier analysis

Derandomizing simplification

Let f be a depth-(d-1) read-once AC^0 formula

Derandomizing simplification

- Let f be a depth-(d-1) read-once **AC**⁰ formula
- ▶ Let $b \in \{0, 1\}$

Derandomizing simplification

- Let f be a depth-(d-1) read-once AC^0 formula
- ▶ Let $b \in \{0, 1\}$
- ▶ Computational problem: Given $y, z \in \{0,1\}^n$, decide whether

$$f|_{\mathsf{Res}(y,z)} \equiv b$$

Derandomizing simplification

- ▶ Let f be a depth-(d-1) read-once AC^0 formula
- ▶ Let $b \in \{0, 1\}$
- ▶ Computational problem: Given $y, z \in \{0,1\}^n$, decide whether

$$f|_{\mathsf{Res}(y,z)} \equiv b$$

► **Lemma**: Can be decided in depth-*d* read-once **AC**⁰

Deciding whether $f|_{\text{Res}(y,z)} \equiv b$

Deciding whether $f|_{\text{Res}(y,z)} \equiv b$

Deciding whether $f|_{\text{Res}(y,z)} \equiv b$

Deciding whether $f|_{Res(y,z)} \equiv b$ (continued)

▶ At bottom, we get one additional layer:

$$(\operatorname{Res}(y,z)_i \equiv b) \iff (y_i = 0 \land z_i = b)$$

 $(\neg \operatorname{Res}(y,z)_i \equiv b) \iff (y_i = 0 \land z_i = 1 - b)$

- ▶ Let f be a depth-(d-1) read-once \mathbf{AC}^0 formula
- ▶ Let $b \in \{0, 1\}$

- ▶ Let f be a depth-(d-1) read-once AC^0 formula
- ▶ Let $b \in \{0, 1\}$
- $ightharpoonup X = \operatorname{Res}(G_d \oplus D, G'_d \oplus D')$

- Let f be a depth-(d-1) read-once AC^0 formula
- ▶ Let $b \in \{0, 1\}$
- $ightharpoonup X = \operatorname{Res}(G_d \oplus D, G'_d \oplus D')$
- $ightharpoonup G_d, G'_d$ fool depth d, so

$$\Pr_{\mathbf{X}}[f|_{\mathbf{X}} \equiv b] \approx \Pr_{\mathbf{R}}[f|_{\mathbf{R}} \equiv b]$$

- Let f be a depth-(d-1) read-once AC^0 formula
- ▶ Let $b \in \{0, 1\}$
- $ightharpoonup X = \operatorname{Res}(G_d \oplus D, G'_d \oplus D')$
- $ightharpoonup G_d, G'_d$ fool depth d, so

$$\Pr_{X}[f|_{X} \equiv b] \approx \Pr_{R}[f|_{R} \equiv b]$$

Hybrid argument:

$$\Pr_{X^{\circ t}}[f|_{X^{\circ t}} \equiv b] \approx \Pr_{R^{\circ t}}[f|_{R^{\circ t}} \equiv b]$$

Bridging the gap from d-1 to d+1

▶ So far: Depth-(d-1) formulas collapse with about the right probability

Bridging the gap from d-1 to d+1

- So far: Depth-(d-1) formulas collapse with about the right probability
- We were supposed to show that depth-(d+1) formulas simplify w.r.t. Δ w.h.p.

Idea of proof that $\Delta \mapsto \operatorname{\mathsf{polylog}} n$

Idea of proof that $\Delta \mapsto \operatorname{polylog} n$

Idea of proof that $\Delta \mapsto \operatorname{polylog} n$

$$\Delta = \text{polylog } n$$

▶ To recap, after $t = O((\log \log n)^2)$ restrictions, $\Delta = \text{polylog } n$

$$\Delta = \text{polylog } n$$

▶ To recap, after $t = O((\log \log n)^2)$ restrictions, $\Delta = \text{polylog } n$

$$\Delta = \text{polylog } n$$

- ▶ To recap, after $t = O((\log \log n)^2)$ restrictions, $\Delta = \text{polylog } n$
- ▶ Total cost so far: $\widetilde{O}(\log n)$ truly random bits

▶ **Theorem** (Meka, Reingold, Tal '19): There is an explicit PRG with seed length $\widetilde{O}(\log(n/\varepsilon))$ that fools functions of the form

$$f=\bigoplus_{i=1}^m f_i,$$

▶ **Theorem** (Meka, Reingold, Tal '19): There is an explicit PRG with seed length $\widetilde{O}(\log(n/\varepsilon))$ that fools functions of the form

$$f=\bigoplus_{i=1}^m f_i,$$

where f_1, \ldots, f_m are on disjoint variables and f_i can be computed by an ROBP with width O(1), length polylog n

▶ **Theorem** (Meka, Reingold, Tal '19): There is an explicit PRG with seed length $\widetilde{O}(\log(n/\varepsilon))$ that fools functions of the form

$$f=\bigoplus_{i=1}^m f_i,$$

where f_1, \ldots, f_m are on disjoint variables and f_i can be computed by an ROBP with width O(1), length polylog n

(Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

▶ **Theorem** (Meka, Reingold, Tal '19): There is an explicit PRG with seed length $\widetilde{O}(\log(n/\varepsilon))$ that fools functions of the form

$$f=\bigoplus_{i=1}^m f_i,$$

where f_1, \ldots, f_m are on disjoint variables and f_i can be computed by an ROBP with width O(1), length polylog n

- (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])
- In our case,

$$f = \bigwedge_{i=1}^{m} f_i$$

▶ **Theorem** (Meka, Reingold, Tal '19): There is an explicit PRG with seed length $\widetilde{O}(\log(n/\varepsilon))$ that fools functions of the form

$$f=\bigoplus_{i=1}^m f_i,$$

where f_1, \ldots, f_m are on disjoint variables and f_i can be computed by an ROBP with width O(1), length polylog n

- (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])
- In our case,

$$f = \bigwedge_{i=1}^{m} f_i = \sum_{S \subseteq [m]} \frac{(-1)^{|S|}}{2^m} \prod_{i \in S} (-1)^{f_i}$$

Directions for further research

Directions for further research

Directions for further research

Read-once $\mathbf{AC}^0[\oplus]$

► Natural next step toward derandomizing **BPL**

- Natural next step toward derandomizing BPL
- ▶ Best prior PRG: seed length $\widetilde{O}(\log^2 n)$ [FK '18]

- Natural next step toward derandomizing BPL
- ▶ Best prior PRG: seed length $\widetilde{O}(\log^2 n)$ [FK '18]
- ▶ **Theorem**: Our PRG fools read-once $AC^0[\oplus]$ with seed length

$$\widetilde{O}(t + \log(n/\varepsilon))$$

where t=# parity gates

- Natural next step toward derandomizing BPL
- ▶ Best prior PRG: seed length $\widetilde{O}(\log^2 n)$ [FK '18]
- **Theorem**: Our PRG fools read-once **AC**⁰[⊕] with seed length

$$\widetilde{O}(t + \log(n/\varepsilon))$$

where t=# parity gates

▶ Fool read-once $AC^0[\oplus]$ with seed length $\widetilde{O}(\log(n/\varepsilon))$?

- Natural next step toward derandomizing BPL
- ▶ Best prior PRG: seed length $\widetilde{O}(\log^2 n)$ [FK '18]
- **Theorem**: Our PRG fools read-once **AC**⁰[⊕] with seed length

$$\widetilde{O}(t + \log(n/\varepsilon))$$

where t = # parity gates

- ► Fool read-once $\mathbf{AC}^0[\oplus]$ with seed length $\widetilde{O}(\log(n/\varepsilon))$?
- ► Thanks! Questions?