
Near-Optimal Pseudorandom Generators for
Constant-Depth Read-Once Formulas

Dean Doron1

UT Austin → Stanford

Pooya Hatami2

UT Austin → Ohio State

William M. Hoza3

UT Austin

BIRS Workshop 19w5088
July 8, 2019

1
Supported by NSF Grant CCF-1705028

2
Supported by a Simons Investigator Award (#409864, David Zuckerman)

3
Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

Randomness as a scarce resource

I Randomization is a popular algorithmic technique

I But randomness is costly

I An algorithm that uses fewer random bits is better

Randomness as a scarce resource

I Randomization is a popular algorithmic technique

I But randomness is costly

I An algorithm that uses fewer random bits is better

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Read-once formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Prior work and main result

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress

Seed length Õ(log n)

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

Starting point: Forbes-Kelley PRG

Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

PRGs via pseudorandom restrictions [AW89]

I Start by sampling a pseudorandom restriction X ∈ {0, 1, ?}n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

Restriction notation

I Define Res : {0, 1}n × {0, 1}n → {0, 1, ?}n by

Res(y , z)i =

{
? if yi = 1

zi if yi = 0

y = 0 1 1 0 0 1 0 0
z = 0 0 1 1 1 1 0 1

Res(y , z) = 0 ? ? 1 1 ? 0 1

Restriction notation

I Define Res : {0, 1}n × {0, 1}n → {0, 1, ?}n by

Res(y , z)i =

{
? if yi = 1

zi if yi = 0

y = 0 1 1 0 0 1 0 0
z = 0 0 1 1 1 1 0 1

Res(y , z) = 0 ? ? 1 1 ? 0 1

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε
I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε
I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε
I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε
I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε
I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 1 ¬x1 0x8 x3 1 0 x11 x4 0 0x13

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧ 0∧ 0 ∧ 0

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∨ ∨∨

∧∧ ∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

∧∧ ∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n

∧

x7 ¬x1x8 x3 x11 x4

I Step 2: Fool restricted formula, taking advantage of simplicity

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

Simplification

I ∆(f)
def
= maximum fan-in of any gate other than root

I Main Lemma: With high probability over X ◦t ,

∆(f |X◦t) ≤ polylog n,

where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”

∆ 7→ polylog n: Proof outline

I Chen, Steinke, Vadhan ’15: Read-once AC0 simplifies under
truly random restrictions

I Testing for simplification is another read-once AC0 problem

I So we can derandomize the [CSV15] analysis:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

∆ 7→ polylog n: Proof outline

I Chen, Steinke, Vadhan ’15: Read-once AC0 simplifies under
truly random restrictions

I Testing for simplification is another read-once AC0 problem

I So we can derandomize the [CSV15] analysis:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

∆ 7→ polylog n: Proof outline

I Chen, Steinke, Vadhan ’15: Read-once AC0 simplifies under
truly random restrictions

I Testing for simplification is another read-once AC0 problem

I So we can derandomize the [CSV15] analysis:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)

Collapse under truly random restrictions

I Assume f is a biased read-once AC0 formula:

E[f] ≤ ρ or E[f] ≥ 1− ρ

I Let R = Res(U,U ′) (truly random restriction)

I Theorem [CSV ’15]:

Pr
R◦s

[f |R◦s nonconstant] ≤ ρ +
1

n100
,

where s = O(log log n)

I (Proof uses Fourier analysis)

Collapse under truly random restrictions

I Assume f is a biased read-once AC0 formula:

E[f] ≤ ρ or E[f] ≥ 1− ρ

I Let R = Res(U,U ′) (truly random restriction)

I Theorem [CSV ’15]:

Pr
R◦s

[f |R◦s nonconstant] ≤ ρ +
1

n100
,

where s = O(log log n)

I (Proof uses Fourier analysis)

Collapse under truly random restrictions

I Assume f is a biased read-once AC0 formula:

E[f] ≤ ρ or E[f] ≥ 1− ρ

I Let R = Res(U,U ′) (truly random restriction)

I Theorem [CSV ’15]:

Pr
R◦s

[f |R◦s nonconstant] ≤ ρ +
1

n100
,

where s = O(log log n)

I (Proof uses Fourier analysis)

Collapse under truly random restrictions

I Assume f is a biased read-once AC0 formula:

E[f] ≤ ρ or E[f] ≥ 1− ρ

I Let R = Res(U,U ′) (truly random restriction)

I Theorem [CSV ’15]:

Pr
R◦s

[f |R◦s nonconstant] ≤ ρ +
1

n100
,

where s = O(log log n)

I (Proof uses Fourier analysis)

NAND formulas

∧

∨ ∨∨

∧ ∧∧ ∧ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

NAND formulas

NAND

NAND NANDNAND

NAND NANDNAND NAND NAND NAND

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

Collapse under truly random restrictions (continued)

I Corollary: If E[f] ≥ 1− ρ, then

Pr
R◦s

[f |R◦s 6≡ 1] ≤ 2ρ +
1

n100

I Let F be a set of formulas on disjoint variable sets

I Assume ∀f ∈ F , E[f] ≥ 1− ρ
I Corollary:

Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1] ≤
(

2ρ +
1

n100

)|F|
.

Collapse under truly random restrictions (continued)

I Corollary: If E[f] ≥ 1− ρ, then

Pr
R◦s

[f |R◦s 6≡ 1] ≤ 2ρ +
1

n100

I Let F be a set of formulas on disjoint variable sets

I Assume ∀f ∈ F , E[f] ≥ 1− ρ
I Corollary:

Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1] ≤
(

2ρ +
1

n100

)|F|
.

Collapse under truly random restrictions (continued)

I Corollary: If E[f] ≥ 1− ρ, then

Pr
R◦s

[f |R◦s 6≡ 1] ≤ 2ρ +
1

n100

I Let F be a set of formulas on disjoint variable sets

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I Corollary:

Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1] ≤
(

2ρ +
1

n100

)|F|
.

Collapse under truly random restrictions (continued)

I Corollary: If E[f] ≥ 1− ρ, then

Pr
R◦s

[f |R◦s 6≡ 1] ≤ 2ρ +
1

n100

I Let F be a set of formulas on disjoint variable sets

I Assume ∀f ∈ F , E[f] ≥ 1− ρ
I Corollary:

Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1] ≤
(

2ρ +
1

n100

)|F|
.

Derandomizing collapse

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Computational problem: Given y , z ∈ {0, 1}n, decide whether

∃f ∈ F , f |Res(y ,z) ≡ 1

I Lemma: Can be decided in depth-d read-once AC0

Derandomizing collapse

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Computational problem: Given y , z ∈ {0, 1}n, decide whether

∃f ∈ F , f |Res(y ,z) ≡ 1

I Lemma: Can be decided in depth-d read-once AC0

Derandomizing collapse

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Computational problem: Given y , z ∈ {0, 1}n, decide whether

∃f ∈ F , f |Res(y ,z) ≡ 1

I Lemma: Can be decided in depth-d read-once AC0

Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1

NAND

a cb

≡ 1 ⇐⇒

∨

b ≡ 0a ≡ 0 c ≡ 0

NAND

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 1a′ ≡ 1 c ′ ≡ 1

Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1

NAND

a cb

≡ 1 ⇐⇒
∨

b ≡ 0a ≡ 0 c ≡ 0

NAND

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 1a′ ≡ 1 c ′ ≡ 1

Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1

NAND

a cb

≡ 1 ⇐⇒
∨

b ≡ 0a ≡ 0 c ≡ 0

NAND

a′ c ′b′

≡ 0 ⇐⇒
∧

b′ ≡ 1a′ ≡ 1 c ′ ≡ 1

Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1 (continued)

I At bottom, we get one additional layer:

(Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = b)

(¬Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = 1− b)

I At top: “∃f ∈ F” is one more ∨ gate (merge with top ∨ gates)

Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1 (continued)

I At bottom, we get one additional layer:

(Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = b)

(¬Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = 1− b)

I At top: “∃f ∈ F” is one more ∨ gate (merge with top ∨ gates)

Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:

Pr
X◦s

[∀f ∈ F , f |X◦s 6≡ 1] ≈ Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1]

≤
(

2ρ +
1

n100

)|F|

Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:

Pr
X◦s

[∀f ∈ F , f |X◦s 6≡ 1] ≈ Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1]

≤
(

2ρ +
1

n100

)|F|

Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:

Pr
X◦s

[∀f ∈ F , f |X◦s 6≡ 1] ≈ Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1]

≤
(

2ρ +
1

n100

)|F|

Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:

Pr
X◦s

[∀f ∈ F , f |X◦s 6≡ 1] ≈ Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1]

≤
(

2ρ +
1

n100

)|F|

Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:

Pr
X◦s

[∀f ∈ F , f |X◦s 6≡ 1] ≈ Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1]

≤
(

2ρ +
1

n100

)|F|

∆ 7→
√

∆ polylog n

I So far: X ◦s causes any biased depth-(d − 1) formula to collapse

I What about unbiased depth-(d + 1) formulas?

I Assume that for every gate g in f , E[¬g] ≥ 1/ poly(n)

I Lemma: With high probability over X ◦s ,

∆(f |X◦s) ≤
√

∆(f) · polylog n

∆ 7→
√

∆ polylog n

I So far: X ◦s causes any biased depth-(d − 1) formula to collapse

I What about unbiased depth-(d + 1) formulas?

I Assume that for every gate g in f , E[¬g] ≥ 1/ poly(n)

I Lemma: With high probability over X ◦s ,

∆(f |X◦s) ≤
√

∆(f) · polylog n

∆ 7→
√

∆ polylog n

I So far: X ◦s causes any biased depth-(d − 1) formula to collapse

I What about unbiased depth-(d + 1) formulas?

I Assume that for every gate g in f , E[¬g] ≥ 1/ poly(n)

I Lemma: With high probability over X ◦s ,

∆(f |X◦s) ≤
√

∆(f) · polylog n

∆ 7→
√

∆ polylog n

I So far: X ◦s causes any biased depth-(d − 1) formula to collapse

I What about unbiased depth-(d + 1) formulas?

I Assume that for every gate g in f , E[¬g] ≥ 1/ poly(n)

I Lemma: With high probability over X ◦s ,

∆(f |X◦s) ≤
√

∆(f) · polylog n

Illustration: ∆ 7→
√

∆ polylog n

NAND

NAND NANDNAND

NAND NANDNAND NAND NAND NAND

NAND NAND NAND NANDNAND NAND NAND NAND NAND NAND NAND NANDNAND

Likely to collapse
if biased

Likely to have few
remaining children

Total depth d + 1

Illustration: ∆ 7→
√

∆ polylog n

NAND

NAND NANDNAND

NAND NANDNAND NAND NAND NAND

NAND NAND NAND NANDNAND NAND NAND NAND NAND NAND NAND NANDNAND

Likely to collapse
if biased

Likely to have few
remaining children

Total depth d + 1

Illustration: ∆ 7→
√

∆ polylog n

NAND

NAND NANDNAND

NAND NANDNAND NAND NAND NAND

NAND NAND NAND NANDNAND NAND NAND NAND NAND NAND NAND NANDNAND

Likely to collapse
if biased

Likely to have few
remaining children

Total depth d + 1

Proof that ∆ 7→
√

∆ polylog n

I (This analysis follows [GMRTV12, CSV15])

I Let g be a gate, g 6= root

I Partition children h into O(log n) buckets based on E[h]

I Consider one bucket B = {h : E[h] ≈ 1− ρ}

Proof that ∆ 7→
√

∆ polylog n

I (This analysis follows [GMRTV12, CSV15])

I Let g be a gate, g 6= root

I Partition children h into O(log n) buckets based on E[h]

I Consider one bucket B = {h : E[h] ≈ 1− ρ}

Proof that ∆ 7→
√

∆ polylog n

I (This analysis follows [GMRTV12, CSV15])

I Let g be a gate, g 6= root

I Partition children h into O(log n) buckets based on E[h]

I Consider one bucket B = {h : E[h] ≈ 1− ρ}

Proof that ∆ 7→
√

∆ polylog n

I (This analysis follows [GMRTV12, CSV15])

I Let g be a gate, g 6= root

I Partition children h into O(log n) buckets based on E[h]

I Consider one bucket B = {h : E[h] ≈ 1− ρ}

Illustration: ∆ 7→
√

∆ polylog n (continued)

g

h h′

Likely to collapse
if biased

Likely to have few
remaining children

Total depth d + 1

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g]

≤
∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g]

≤
∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g]

≤
∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g] ≤

∏
h∈B

E[h]

≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g] ≤

∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g] ≤

∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g] ≤

∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n)

, k = Θ((log n)/ log ∆)

I Pr[L ≥ M] =

Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n)

, k = Θ((log n)/ log ∆)

I Pr[L ≥ M] =

Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n)

, k = Θ((log n)/ log ∆)

I Pr[L ≥ M] =

Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)

≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+

1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k =

Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Proof that ∆ 7→
√

∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n), k = Θ((log n)/ log ∆)

I Pr[L ≥ M] = Pr

[(
L

k

)
≥
(
M

k

)]
Pascal

≤ 1(M
k

) · E [(L
k

)]
Markov

≤ 1(M
k

) · (|B|
k

)
·
(
O(ρ)k +

1

n200

)
≤
(
|B|e
M

)k

·
(
O(ρ)k +

1

n200

)
Stirling

≤
(

1√
∆

)k

+
1

n200
· (
√

∆)k

≤ 2

n100

Finishing proof of main lemma

I After s = O(log log n) restrictions, ∆ 7→
√

∆ · polylog n

I Therefore, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

Finishing proof of main lemma

I After s = O(log log n) restrictions, ∆ 7→
√

∆ · polylog n

I Therefore, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

Finishing proof of main lemma

I After s = O(log log n) restrictions, ∆ 7→
√

∆ · polylog n

I Therefore, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

Finishing proof of main lemma

I After s = O(log log n) restrictions, ∆ 7→
√

∆ · polylog n

I Therefore, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits

∧

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi =
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
polynomials

LV17

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Directions for further research

O(1)-ROBPs

Arbitrary-order
O(1)-ROBPs

poly(n)-ROBPs

Arbitrary-order
poly(n)-ROBPs

3-ROBPs
MRT19

Arbitrary-order
3-ROBPs
MRT19

2-ROBPs
SZ95

Arbitrary-order
2-ROBPs

SZ95

Conjunctions
NN93

Parities
NN93

Read-once
CNFs

DETT10

Read-once
AC0

This work

Read-once
formulas

Regular
O(1)-ROBPs

BRRY14

Arbitrary-order
permutation
O(1)-ROBPs

CHHL18

Read-once
AC0[⊕]

Read-once
polynomials

LV17

Read-once AC0[⊕]

⊕

∨ ∨∧

∨ ⊕⊕ ⊕ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?

