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I Randomization is a popular algorithmic technique
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I An algorithm that uses fewer random bits is better



Randomness as a scarce resource

I Randomization is a popular algorithmic technique

I But randomness is costly

I An algorithm that uses fewer random bits is better



Pseudorandom generators (PRGs)

s bits Gen n bits

I Gen “fools” f : {0, 1}n → {0, 1} if

E[f (Gen(U))] = E[f (U)]± ε

I Goal: Design PRG that fools an interesting class of functions f

I Minimize seed length s = s(n, ε)
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I This work: Fool depth-d read-once formulas for d = O(1)

I Read-once version of AC0
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Seed length Model fooled Reference

O(n0.001) AC0 Ajtai, Wigderson ’89

O(log2d+6 n) AC0 Nisan ’91

Õ(logd+4 n) AC0 Trevisan, Xue ’13

Õ(logd+1 n) Read-once AC0 Chen, Steinke, Vadhan ’15

Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18

Õ(log n) Read-once AC0 This work

I Main result: PRG for read-once AC0 with seed length

log(n/ε) · O(d log log(n/ε))2d+2.
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Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18
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Õ(log2 n)
Arbitrary-order

width-O(1) ROBPs
Forbes, Kelley ’18
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Motivation: L vs. BPL

I Big open problem: Prove L = BPL

I “Randomness is not necessary for space-efficient computation”

I Main approach: Design optimal PRG for “ROBPs”

I Bad news: Seed length O(log2 n) has not been improved for
decades [Nisan ’92]

I Good news: Can achieve seed length Õ(log n) for increasingly
powerful restricted models

I Read-once AC0 is one of the frontiers of this progress
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Seed length Õ(log n)
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Restriction notation

I Define Res : {0, 1}n × {0, 1}n → {0, 1, ?}n by

Res(y , z)i =

{
? if yi = 1

zi if yi = 0

y = 0 1 1 0 0 1 0 0
z = 0 0 1 1 1 1 0 1

Res(y , z) = 0 ? ? 1 1 ? 0 1
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Forbes-Kelley pseudorandom restriction

I A distribution D over {0, 1}n is ε-biased if it fools parities:

S 6= ∅ =⇒

∣∣∣∣∣E
[⊕
i∈S

Di

]
− 1

2

∣∣∣∣∣ ≤ ε

I Let D,D ′ be independent small-bias strings

I Let X = Res(D,D ′) (seed length Õ(log n))

I Theorem [Forbes, Kelley ’18]: For any O(1)-width ROBP f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I In words, X preserves expectation of f

I (Proof involves clever Fourier analysis, building on [RSV13, HLV18, CHRT18])
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Forbes-Kelley pseudorandom generator

I So [FK18] can assign values to half the inputs using Õ(log n)
truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]

I Total cost: Õ(log2 n) truly random bits
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truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]
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truly random bits

I After restricting, f |X is another ROBP

I So we can apply another pseudorandom restriction

I Let X ◦t denote composition of t independent copies of X

I Let t = O(log n)

I With high probability, X ◦t ∈ {0, 1}n (no ?)

I Expectation preserved at every step, so total error is low:

E
X◦t

[f (X ◦t)] ≈ E
U

[f (U)]
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Improved PRGs via simplification [GMRTV12]

I Step 1: Apply pseudorandom restriction X ∈ {0, 1, ?}n

I Design X to preserve expectation

I Design X so that X ◦t also simplifies formula, for t � log n
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Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)
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Õ(log n)

I Let’s sample X ∈ {0, 1, ?}n for depth d + 1

1. Recursively sample Gd ,G
′
d ∈ {0, 1}n

2. Sample D,D ′ ∈ {0, 1}n with small bias

3. X = Res(Gd ⊕ D,G ′d ⊕ D ′)



Our pseudorandom restriction

I Assume by recursion: PRG for depth d with seed length
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E
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I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:
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Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)



Preserving expectation

I Claim: For any depth-(d + 1) read-once AC0 formula f ,

E
X ,U

[f |X (U)] ≈ E
U

[f (U)]

I Proof: Read-once AC0 can be simulated by constant-width
ROBPs [CSV15]

I So we can simply apply Forbes-Kelley result:

X = Res(Gd ⊕ D,G ′d ⊕ D ′)



Simplification

I ∆(f )
def
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where t = O((log log n)2)

I Actually we only prove this statement “up to sandwiching”
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I Chen, Steinke, Vadhan ’15: Read-once AC0 simplifies under
truly random restrictions

I Testing for simplification is another read-once AC0 problem

I So we can derandomize the [CSV15] analysis:
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Collapse under truly random restrictions

I Assume f is a biased read-once AC0 formula:

E[f ] ≤ ρ or E[f ] ≥ 1− ρ

I Let R = Res(U,U ′) (truly random restriction)

I Theorem [CSV ’15]:

Pr
R◦s

[f |R◦s nonconstant] ≤ ρ +
1

n100
,

where s = O(log log n)

I (Proof uses Fourier analysis)
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Collapse under truly random restrictions (continued)

I Corollary: If E[f ] ≥ 1− ρ, then

Pr
R◦s

[f |R◦s 6≡ 1] ≤ 2ρ +
1

n100

I Let F be a set of formulas on disjoint variable sets

I Assume ∀f ∈ F , E[f ] ≥ 1− ρ
I Corollary:

Pr
R◦s

[∀f ∈ F , f |R◦s 6≡ 1] ≤
(

2ρ +
1

n100

)|F|
.
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I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Computational problem: Given y , z ∈ {0, 1}n, decide whether

∃f ∈ F , f |Res(y ,z) ≡ 1

I Lemma: Can be decided in depth-d read-once AC0
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Deciding whether ∃f ∈ F , f |Res(y ,z) ≡ 1 (continued)

I At bottom, we get one additional layer:

(Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = b)

(¬Res(y , z)i ≡ b) ⇐⇒ (yi = 0 ∧ zi = 1− b)

I At top: “∃f ∈ F” is one more ∨ gate (merge with top ∨ gates)
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Collapse under pseudorandom restrictions

I Let F be a set of depth-(d − 1) formulas on disjoint variables

I Assume ∀f ∈ F , E[f ] ≥ 1− ρ

I X = Res(Gd ⊕ D,G ′d ⊕ D ′)

I Gd ,G
′
d fool depth d , so

Pr
X

[∀f ∈ F , f |X 6≡ 1] ≈ Pr
R

[∀f ∈ F , f |R 6≡ 1]

I Hybrid argument:
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≤
(
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∆ 7→
√

∆ polylog n

I So far: X ◦s causes any biased depth-(d − 1) formula to collapse

I What about unbiased depth-(d + 1) formulas?

I Assume that for every gate g in f , E[¬g ] ≥ 1/ poly(n)

I Lemma: With high probability over X ◦s ,

∆(f |X◦s ) ≤
√

∆(f ) · polylog n
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Proof that ∆ 7→
√

∆ polylog n

I (This analysis follows [GMRTV12, CSV15])

I Let g be a gate, g 6= root

I Partition children h into O(log n) buckets based on E[h]

I Consider one bucket B = {h : E[h] ≈ 1− ρ}
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Proof that ∆ 7→
√

∆ polylog n (continued)

I B = {h : E[h] ≈ 1− ρ}

I How big can B be?

I
1/ poly(n) ≤ E[¬g ]

≤
∏
h∈B

E[h] ≈ (1− ρ)|B|

I So |B| ≤ O((1/ρ) log n)

I We also trivially have |B| ≤ ∆
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Proof that ∆ 7→
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∆ polylog n (continued)

I Let L = #{h ∈ B : h|X◦s 6≡ 1} (number of living children)

I Let M = Θ(
√

∆ log n)

, k = Θ((log n)/ log ∆)

I Pr[L ≥ M] =
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)
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Finishing proof of main lemma

I After s = O(log log n) restrictions, ∆ 7→
√

∆ · polylog n

I Therefore, after t = O((log log n)2) restrictions, ∆ = polylog n

I Total cost so far: Õ(log n) truly random bits
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Final step: MRT PRG

I Theorem (Meka, Reingold, Tal ’19): There is an explicit PRG
with seed length Õ(log(n/ε)) that fools functions of the form

f =
m⊕
i=1

fi ,

where f1, . . . , fm are on disjoint variables and fi can be
computed by an ROBP with width O(1), length polylog n

I (Proof uses GMRTV approach, building on [GY14, CHRT18, Vio09])

I In our case,

f =
m∧
i=1

fi

=
∑

S⊆[m]

(−1)|S|

2m

∏
i∈S

(−1)fi
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Read-once AC0[⊕]

⊕

∨ ∨∧

∨ ⊕⊕ ⊕ ∧ ∧

x7 ¬x2 ¬x1 ¬x5x8 x3 x12 ¬x9 x11 x4 x10 ¬x6x13



Fooling read-once AC0[⊕]

I Natural next step toward derandomizing BPL

I Best prior PRG: seed length Õ(log2 n) [FK ’18]

I Theorem: Our PRG fools read-once AC0[⊕] with seed length

Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?

I Thanks! Questions?
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Õ(t + log(n/ε))

where t = # parity gates

I Fool read-once AC0[⊕] with seed length Õ(log(n/ε))?
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