Simple Optimal Hitting Sets for Small-Success RL

William M. Hoza\(^1\) David Zuckerman\(^2\)

The University of Texas at Austin

September 24, 2018
Dagstuhl Seminar 18391

\(^1\)Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin

\(^2\)Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864)
Randomized log-space complexity classes

Let L be a language
Randomized log-space complexity classes

- Let L be a language
- $L \in \text{BPL}$ if there is a randomized log-space algorithm A that always halts such that
 \[
 x \in L \implies \Pr[A(x) \text{ accepts}] \geq \frac{2}{3}
 \]
 \[
 x \notin L \implies \Pr[A(x) \text{ accepts}] \leq \frac{1}{3}.
 \]
Randomized log-space complexity classes

- Let L be a language
- $L \in \textbf{BPL}$ if there is a randomized log-space algorithm A that always halts such that
 \[x \in L \implies \Pr[A(x) \text{ accepts}] \geq \frac{2}{3} \]
 \[x \notin L \implies \Pr[A(x) \text{ accepts}] \leq \frac{1}{3}. \]
- $L \in \textbf{RL}$ if there is a randomized log-space algorithm A that always halts such that
 \[x \in L \implies \Pr[A(x) \text{ accepts}] \geq \frac{1}{2} \]
 \[x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \]
The power of randomness for small-space algorithms

- $L \subseteq RL \subseteq BPL$
The power of randomness for small-space algorithms

- $L \subseteq RL \subseteq BPL$
- Conjecture: $L = RL = BPL$
The power of randomness for small-space algorithms

- \(L \subseteq RL \subseteq BPL \)
- Conjecture: \(L = RL = BPL \)
The power of randomness for small-space algorithms

- $L \subseteq RL \subseteq BPL$
- Conjecture: $L = RL = BPL$
Read-once branching programs

$n + 1$ layers

start

width n

acc
Read-once branching programs

Computes function $f: \{0, 1\}^n \to \{0, 1\}$

$n + 1$ layers

width n
Read-once branching programs

start

$n + 1 \text{ layers}$

$\text{width } n$

acc

$x =$

Computes function $f : \{0, 1 \}^n \rightarrow \{0, 1 \}$
Read-once branching programs

$x = 1$
Read-once branching programs

\[x = 1\ 0\]

\[\text{width } n\]

\[n + 1 \text{ layers}\]
Read-once branching programs

$\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}$

Computes function $f: \{0, 1\}^n \rightarrow \{0, 1\}$
Read-once branching programs

$\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
\end{array}$

$x = 1 \quad 0 \quad 0 \quad 0 \quad 1$
Read-once branching programs

\[x = 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \]

\[n + 1 \text{ layers} \]

width \(n \)

Computes function \(f: \{0, 1\}^n \rightarrow \{0, 1\} \)
Read-once branching programs

Start

\(n + 1 \) layers

Width \(n \)

\(x = \begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 1
\end{array} \)

Computes function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
Fooling / Hitting ROBPs

\[\Pr[x[f(x) = 1] - \Pr[z[f(Gen(z)) = 1]] \leq \varepsilon] \]

Suitable for derandomizing BPL

\[\Pr[x[f(x) = 1] \geq \varepsilon] \Rightarrow \exists z, f(Gen(z)) = 1 \]

Suitable for derandomizing RL
Fooling / Hitting ROBPs

Pseudorandom generator: For every width-\(n\) ROBP,

\[
| \Pr_x[f(x) = 1] - \Pr_z[f(\text{Gen}(z)) = 1] | \leq \varepsilon
\]
Fooling / Hitting ROBPs

Pseudorandom generator: For every width-n ROBP,

$$|\Pr_x[f(x) = 1] - \Pr_z[f(\text{Gen}(z)) = 1]| \leq \epsilon$$

Suitable for derandomizing BPL
Fooling / Hitting ROBPs

Pseudorandom generator: For every width-\(n\) ROBP,
\[
\left| \Pr_x[f(x) = 1] - \Pr_z[f(\text{Gen}(z)) = 1] \right| \leq \varepsilon
\]

Suitable for derandomizing BPL

Hitting set generator: For every width-\(n\) ROBP,
\[
\Pr_x[f(x) = 1] \geq \varepsilon \implies \exists z, f(\text{Gen}(z)) = 1
\]
Fooling / Hitting ROBP
s bits \rightarrow \text{Gen} \rightarrow n \text{ bits}

Pseudorandom generator: For every width-n ROBP,
\[|\Pr_x[f(x) = 1] - \Pr_z[f(\text{Gen}(z)) = 1]| \leq \varepsilon \]

Suitable for derandomizing BPL

Hitting set generator: For every width-n ROBP,
\[\Pr_x[f(x) = 1] \geq \varepsilon \implies \exists z, f(\text{Gen}(z)) = 1 \]

Suitable for derandomizing RL
Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$
- Nisan 1990: PRG with seed length $O(\log 2^n + \log(1/\varepsilon) \log n)$
- Braverman, Cohen, Garg 2018: HSG with seed length $\tilde{O}(\log 2^n + \log(1/\varepsilon))$
- This work: HSG with seed length $O(\log 2^n + \log(1/\varepsilon))$
Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$

- Babai, Nisan, Szegedy 1989: PRG with seed length

 $$2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$$

- Nisan 1990: PRG with seed length

 $O(\log^2 n + \log(1/\varepsilon) \log n)$
Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$
- Nisan 1990: PRG with seed length $O(\log^2 n + \log(1/\varepsilon) \log n)$
- Braverman, Cohen, Garg 2018: HSG with seed length $\tilde{O}(\log^2 n + \log(1/\varepsilon))$
Prior generators and main result

- Nonconstructive: PRG with seed length $O(\log n + \log(1/\varepsilon))$
- Babai, Nisan, Szegedy 1989: PRG with seed length
 $2^{O(\sqrt{\log n})} \cdot \log(1/\varepsilon)$
- Nisan 1990: PRG with seed length
 $O(\log^2 n + \log(1/\varepsilon) \log n)$
- Braverman, Cohen, Garg 2018: HSG with seed length
 $\tilde{O}(\log^2 n + \log(1/\varepsilon))$

- This work: HSG with seed length
 $O(\log^2 n + \log(1/\varepsilon))$
Comparison with [BCG '18]

- Our construction and analysis are simple
Comparison with [BCG '18]

- Our construction and analysis are simple
- Braverman, Cohen, Garg '18:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Matrix bundles</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Matrix bundles sequences</td>
<td>23</td>
</tr>
<tr>
<td>5.3</td>
<td>Gluing MBSs</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Multiplication Rules for Matrix Bundle Sequences</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>The multiplication rules $\overrightarrow{\circ}$, $\overleftarrow{\circ}$ parameterized by a sampler</td>
<td>26</td>
</tr>
<tr>
<td>6.2</td>
<td>The multiplication rules $\overrightarrow{\circ}$, $\overleftarrow{\circ}$ parameterized by a sampler</td>
<td>29</td>
</tr>
<tr>
<td>6.3</td>
<td>The multiplication rules \circlearrowleft, \circlearrowright parameterized by delta of samplers</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Leveled Matrix Representations</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>The Family $\mathcal{F}(A, B)$</td>
<td>41</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic properties of the MBSs in $\mathcal{F}(A, B)$</td>
<td>44</td>
</tr>
<tr>
<td>8.2</td>
<td>The slices of $\mathcal{F}(A, B)$</td>
<td>48</td>
</tr>
</tbody>
</table>
Comparison with [BCG ’18]

▶ Our construction and analysis are simple
▶ Braverman, Cohen, Garg ’18:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Matrix bundles</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Matrix bundles sequences</td>
<td>23</td>
</tr>
<tr>
<td>5.3</td>
<td>Gluing MBSs</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Multiplication Rules for Matrix Bundle Sequences</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>The multiplication rules parameterized by a sampler</td>
<td>26</td>
</tr>
<tr>
<td>6.2</td>
<td>The multiplication rules parameterized by a sampler</td>
<td>29</td>
</tr>
<tr>
<td>6.3</td>
<td>The multiplication rules parameterized by delta of samplers</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Leveled Matrix Representations</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>The Family $\mathcal{F}(A, B)$</td>
<td>41</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic properties of the MBSs in $\mathcal{F}(A, B)$</td>
<td>44</td>
</tr>
<tr>
<td>8.2</td>
<td>The slices of $\mathcal{F}(A, B)$</td>
<td>48</td>
</tr>
</tbody>
</table>

This work

Hitting Set Generator

Suitable for \textbf{RL}
Comparison with [BCG ’18]

► Our construction and analysis are simple
► Braverman, Cohen, Garg ’18:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Matrix bundles</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Matrix bundles sequences</td>
<td>23</td>
</tr>
<tr>
<td>5.3</td>
<td>Gluing MBSs</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Multiplication Rules for Matrix Bundle Sequences</td>
<td>26</td>
</tr>
<tr>
<td>6.1</td>
<td>The multiplication rules $\frac{\om}{\oc}, \frac{\um}{\uc}$ parameterized by a sampler</td>
<td>26</td>
</tr>
<tr>
<td>6.2</td>
<td>The multiplication rules \oc, \um parameterized by a sampler</td>
<td>29</td>
</tr>
<tr>
<td>6.3</td>
<td>The multiplication rules \oc, \um parameterized by delta of samplers</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Leveled Matrix Representations</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>The Family $F(A, B)$</td>
<td>41</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic properties of the MBSs in $F(A, B)$</td>
<td>44</td>
</tr>
<tr>
<td>8.2</td>
<td>The slices of $F(A, B)$</td>
<td>48</td>
</tr>
</tbody>
</table>

Nisan ’90

- Pseudorandom Generator
 - Suitable for BPL

This work

- Hitting Set Generator
 - Suitable for RL
Comparison with [BCG ’18]

- Our construction and analysis are simple
- Braverman, Cohen, Garg ’18:

<table>
<thead>
<tr>
<th>9.1 Matrix bundles</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Matrix bundles sequences</td>
<td>23</td>
</tr>
<tr>
<td>5.3 Gluing MBSs</td>
<td>25</td>
</tr>
</tbody>
</table>

6 Multiplication Rules for Matrix Bundle Sequences
- 6.1 The multiplication rules $\overrightarrow{\cdot}, \overrightarrow{\circ}$ parameterized by a sampler | 26 |
- 6.2 The multiplication rules $\overrightarrow{\cdot}, \overrightarrow{\circ}$ parameterized by a sampler | 29 |
- 6.3 The multiplication rules $\overrightarrow{\cdot}, \overrightarrow{\circ}$ parameterized by delta of samplers | 34 |

7 Leveled Matrix Representations | 39 |

8 The Family $\mathcal{F}(A, B)$
- 8.1 Basic properties of the MBSs in $\mathcal{F}(A, B)$ | 44 |
- 8.2 The slices of $\mathcal{F}(A, B)$ | 48 |

<table>
<thead>
<tr>
<th>Nisan ’90</th>
<th>BCG ’18</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudorandom Generator</td>
<td>“Pseudorandom Pseudodistribution”</td>
<td>Hitting Set Generator</td>
</tr>
<tr>
<td>Suitable for BPL</td>
<td>Suitable for BPL</td>
<td>Suitable for RL</td>
</tr>
</tbody>
</table>
Structural lemma for ROBPs

Let f be a width-n, length-n ROBP
Structural lemma for ROBPs

- Let f be a width-n, length-n ROBP
- Assume $\Pr[\text{accept}] = \varepsilon \ll 1/n^3$
Let f be a width-n, length-n ROBP

Assume $\Pr[\text{accept}] = \epsilon \ll 1/n^3$

Lemma: There is a vertex u so that

$$\Pr[\text{reach } u] \geq \frac{1}{2n^3} \quad \text{and} \quad \Pr[\text{accept } | \text{ reach } u] \geq \epsilon n.$$
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \varepsilon n)\)

Say \(u\) is a milestone if \(\Pr[\text{accept} \mid \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \varepsilon n)\)

- Say \(u\) is a \text{milestone} if \(\Pr[\text{accept} \mid \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)
- Claim: Every accepting path passes through a milestone
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \epsilon n)\)

- Say \(u\) is a **milestone** if \(\Pr[\text{accept} \mid \text{reach } u] \in [\epsilon n, 2\epsilon n]\)

- **Claim:** Every accepting path passes through a milestone
 - **Proof:** Probability of acceptance at most doubles in each step

\[\Pr[\text{accept} \mid u] \leq \sum_{\text{milestone}} \Pr[\text{reach } u \text{ and accept}] \leq \sum_{\text{milestone}} \Pr[\text{reach } u] \cdot 2\epsilon n\]

\(\# \text{milestones} \leq n^2\), so for some milestone \(u\), \(\Pr[\text{reach } u] \geq \frac{1}{2n^3}\)
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \varepsilon n)\)

- Say \(u\) is a milestone if \(\Pr[\text{accept} \mid \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)

- Claim: Every accepting path passes through a milestone

- Proof: Probability of acceptance at most doubles in each step

<table>
<thead>
<tr>
<th>3% chance of accept</th>
<th>(\rightarrow)</th>
<th>1</th>
<th>6% chance of accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\rightarrow)</td>
<td>0</td>
<td>0% chance of accept</td>
</tr>
</tbody>
</table>
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \varepsilon n)\)

- Say \(u\) is a **milestone** if \(\Pr[\text{accept} \mid \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)

- **Claim:** Every accepting path passes through a milestone

 - **Proof:** Probability of acceptance at most doubles in each step

 \[
 \begin{array}{c}
 3\% \text{ chance of accept} \rightarrow 1 \quad 6\% \text{ chance of accept} \\
 0 \quad 0\% \text{ chance of accept} \\
 \end{array}
 \]

- \(\varepsilon = \Pr[\text{accept}] \leq \sum_{u \text{ milestone}} \Pr[\text{reach } u \text{ and accept}]\)
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} \mid u] \geq \varepsilon n)\)

- Say \(u\) is a **milestone** if \(\Pr[\text{accept} \mid \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)

- **Claim:** Every accepting path passes through a milestone

 - **Proof:** Probability of acceptance at most doubles in each step

 \[
 \varepsilon = \Pr[\text{accept}] \leq \sum_{u \text{ milestone}} \Pr[\text{reach } u \text{ and accept}] \\
 \leq \sum_{u \text{ milestone}} \Pr[\text{reach } u] \cdot 2\varepsilon n
 \]
Proof of lemma \((\exists u, \Pr[u] \geq \frac{1}{2n^3} \land \Pr[\text{acc} | u] \geq \varepsilon n)\)

- Say \(u\) is a **milestone** if \(\Pr[\text{accept} | \text{reach } u] \in [\varepsilon n, 2\varepsilon n]\)

- **Claim:** Every accepting path passes through a milestone

- **Proof:** Probability of acceptance at most doubles in each step

\[
\begin{align*}
\text{3\% chance of accept} & \quad \text{1} \quad \bullet \text{6\% chance of accept} \\
\text{0} & \quad \bullet \text{0\% chance of accept}
\end{align*}
\]

- \(\varepsilon = \Pr[\text{accept}] \leq \sum_{u \text{ milestone}} \Pr[\text{reach } u \text{ and accept}] \leq \sum_{u \text{ milestone}} \Pr[\text{reach } u] \cdot 2\varepsilon n\)

- \# milestones \(\leq n^2\), so for some milestone \(u\), \(\Pr[\text{reach } u] \geq \frac{1}{2n^3} \) \(\square\)
Iterating the structural lemma

\[u_0 = \text{start} \]

\[\Pr[\text{accept}] = \varepsilon \]
Iterating the structural lemma

\[u_0 = \text{start} \]

\[u_1 \]

\[\text{Pr[accept]} = \varepsilon \quad n\varepsilon \]
Iterating the structural lemma

\[u_0 = \text{start} \]

\[\Pr[\text{accept}] = \varepsilon \]

\[u_1 \]

\[u_2 \]

\[\text{acc} \]

\[\Pr[\text{accept}] = \varepsilon \quad n\varepsilon \quad n^2\varepsilon \]
Iterating the structural lemma

\[u_0 = \text{start} \]

\[\Pr[\text{accept}] = \varepsilon \]

\[u_1 \]

\[u_2 \]

\[u_3 \]

\[n\varepsilon \]

\[n^2\varepsilon \]

\[n^3\varepsilon \]
Iterating the structural lemma

\[u_0 = \text{start} \]

\[\Pr[\text{accept}] = \varepsilon \]

\[u_1 \]

\[u_2 \]

\[u_3 \]

\[\text{acc} = u_t \]

\[n\varepsilon \]

\[n^2\varepsilon \]

\[n^3\varepsilon \]

\[n^t\varepsilon = 1 \]
Idea of our HSG

- Use Nisan’s generator for each individual hop $u_i \rightarrow u_{i+1}$
Idea of our HSG

- Use Nisan’s generator for each individual hop $u_i \rightarrow u_{i+1}$
- Use a “hitter” to recycle the seed of Nisan’s generator from one hop to the next
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density$(E) \geq \theta$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with $\text{density}(E) \geq \theta$

- **Theorem (BGG ’93):** Algorithm that outputs some $z \in E$ with probability $1 - \delta$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density$(E) \geq \theta$

- **Theorem (BGG '93):** Algorithm that outputs some $z \in E$ with probability $1 - \delta$
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density$(E) \geq \theta$
- **Theorem (BGG '93):** Algorithm that outputs some $z \in E$ with probability $1 - \delta$
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density $\text{density}(E) \geq \theta$

Theorem (BGG '93): Algorithm that outputs some $z \in E$ with probability $1 - \delta$

- # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
- # random bits: $O(m + \log(1/\delta))$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density(E) $\geq \theta$
- **Theorem** (BGG '93): Algorithm that outputs some $z \in E$ with probability $1 - \delta$
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$
Hitters (equivalent to dispersers)

- Assume query access to unknown $E \subseteq \{0, 1\}^m$ with density $\text{density}(E) \geq \theta$

- **Theorem (BGG '93):** Algorithm that outputs some $z \in E$ with probability $1 - \delta$
 - # queries: $O(\theta^{-1} \cdot \log(1/\delta))$
 - # random bits: $O(m + \log(1/\delta))$
For any E with density(E) $\geq \theta$, $\Pr_x[\exists y, \text{Hit}(x, y) \in E] \geq 1 - \delta$
Hitter as a function

For any E with $\text{density}(E) \geq \theta$,

$$\Pr_{x} [\exists y, \text{Hit}(x, y) \in E] \geq 1 - \delta$$
Our HSG
Our HSG

\[x \]

\[y_1 \]

\[y_2 \]

\[y_3 \]

\[y_t \]
Our HSG

\[y_1 \]

\[y_2 \]

\[y_3 \]

\[y_t \]
Our HSG
Our HSG
Our HSG

\[x \rightarrow y_1 \rightarrow \text{Hit} \rightarrow \text{NisGen} \rightarrow \]
\[y_2 \rightarrow \text{Hit} \rightarrow \text{NisGen} \rightarrow \]
\[y_3 \rightarrow \text{Hit} \rightarrow \text{NisGen} \rightarrow \]
\[y_t \rightarrow \text{Hit} \rightarrow \text{NisGen} \rightarrow \]

\[n_1 \quad n_2 \quad n_3 \quad n_t \]
Our HSG
Our HSG

\[
x \rightarrow \text{Hit} \rightarrow \text{NisGen} \rightarrow \text{Output} = n
\]
Our HSG in symbols

For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

$$\text{Gen}(x, y_1, \ldots, y_t, n_1, \ldots, n_t) = \text{NisGen}(\text{Hit}(x, y_1))|_{n_1} \circ \cdots \circ \text{NisGen}(\text{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n$$
Our HSG in symbols

- For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

 \[
 \text{Gen}(x, y_1, \ldots, y_t, n_1, \ldots, n_t) = \text{NisGen}(|\text{Hit}(x, y_1)|_{n_1} \odot \cdots \odot \text{NisGen}(|\text{Hit}(x, y_t)|_{n_t}) \in \{0, 1\}^n
 \]

- Here $\odot = \text{concatenation}$, $|_r = \text{first } r \text{ bits}$
Our HSG in symbols

- For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

\[
\text{Gen}(x, y_1, \ldots, y_t, n_1, \ldots, n_t) = \\
\text{NisGen}(\text{Hit}(x, y_1))|_{n_1} \circ \cdots \circ \text{NisGen}(\text{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n
\]

- Here $\circ = \text{concatenation}$, $|_r = \text{first } r \text{ bits}$

- $|x| = O(\log^2 n)$, $|y_i| = O(\log n)$, $t = \frac{\log(1/\varepsilon)}{\log n}$
Our HSG in symbols

- For numbers n_1, \ldots, n_t with $n_1 + \cdots + n_t = n$:

\[
\text{Gen}(x, y_1, \ldots, y_t, n_1, \ldots, n_t) = \text{NisGen}(\text{Hit}(x, y_1))|_{n_1} \circ \cdots \circ \text{NisGen}(\text{Hit}(x, y_t))|_{n_t} \in \{0, 1\}^n
\]

- Here $\circ = \text{concatenation}$, $|_r = \text{first } r \text{ bits}$

- $|x| = O(\log^2 n)$, $|y_i| = O(\log n)$, $t = \frac{\log(1/\varepsilon)}{\log n}$

- So seed length $= O(\log^2 n + \log(1/\varepsilon))$
Proof of correctness of our HSG

\[u_0 = \text{start} \]

\[\Pr[\text{accept}] = \varepsilon \]
Proof of correctness of our HSG

$u_0 = \text{start}$

$Pr[\text{accept}] = \varepsilon$

$n\varepsilon$
Proof of correctness of our HSG

\[\Pr[\text{accept}] = \varepsilon \]

\[u_0 = \text{start} \]

\[u_1 \]

\[u_2 \]

\[n_1 \quad n_2 \]

\[\text{acc} \]
Proof of correctness of our HSG

$u_0 = \text{start}$

$\Pr[\text{accept}] = \varepsilon$

$n_1 \varepsilon \quad n_2 \varepsilon \quad n_3 \varepsilon$

$u_1 \quad u_2 \quad u_3 \quad \text{acc}$
Proof of correctness of our HSG

\[u_0 = \text{start} \quad \text{Pr}[\text{accept}] = \varepsilon \quad n_1 \epsilon \quad n_2 \epsilon \quad u_2 \quad n_3 \epsilon \quad u_3 \quad \text{acc} = u_t \quad n_t \epsilon = 1 \]
Define $E_i \subseteq \{0, 1\}^m$ by

$$E_i = \{z \mid \text{start at } u_{i-1}, \text{ read } \text{NisGen}(z) \Rightarrow \text{ reach } u_i\}$$
Proof of correctness of our HSG (continued)

- Define $E_i \subseteq \{0, 1\}^m$ by

$$E_i = \{z \mid \text{start at } u_{i-1}, \text{ read } \text{NisGen}(z) \implies \text{reach } u_i\}$$

- $\Pr[\text{reach } u_i \mid \text{reach } u_{i-1}] \geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$
Proof of correctness of our HSG (continued)

- Define $E_i \subseteq \{0, 1\}^m$ by
 $$E_i = \{z \mid \text{start at } u_{i-1}, \text{ read } \text{NisGen}(z) \implies \text{reach } u_i\}$$

- $\Pr[\text{reach } u_i \mid \text{reach } u_{i-1}] \geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$

- Hitter property: $\Pr_x[\exists y, \text{Hit}(x, y) \in E_i] > 1 - \frac{1}{t}$
Proof of correctness of our HSG (continued)

- Define $E_i \subseteq \{0, 1\}^m$ by

 $$E_i = \{ z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \Rightarrow \text{ reach } u_i \}$$

- $\Pr[\text{reach } u_i \mid \text{reach } u_{i-1}] \geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3}$

- Hitter property: $\Pr_x[\exists y, \text{Hit}(x, y) \in E_i] > 1 - \frac{1}{t}$

- Union bound: There is one x so that for all i,

 $$\exists y_i, \text{Hit}(x, y_i) \in E_i.$$
Proof of correctness of our HSG (continued)

- Define $E_i \subseteq \{0, 1\}^m$ by
 \[E_i = \{ z \mid \text{start at } u_{i-1}, \text{ read NisGen}(z) \implies \text{reach } u_i \} \]

- \[\Pr[\text{reach } u_i \mid \text{reach } u_{i-1}] \geq \frac{1}{2n^3} \implies \text{density}(E_i) > \frac{1}{4n^3} \]

- Hitter property: \[\Pr_x[\exists y, \text{Hit}(x, y) \in E_i] > 1 - \frac{1}{t} \]

- Union bound: There is one x so that for all i, \[\exists y_i, \text{Hit}(x, y_i) \in E_i. \]

- \[f(\text{Gen}(x, y_1, \ldots, y_t, n_1, \ldots, n_t)) = 1 \]
Suppose language L can be decided by a randomized log-space algorithm A that always halts with

\[x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n) \]
\[x \notin L \implies \Pr[A(x) \text{ accepts}] = 0. \]
Application: Derandomizing small-success \textbf{RL}

- Suppose language L can be decided by a randomized log-space algorithm A that always halts with

 $$x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n)$$
 $$x \notin L \implies \Pr[A(x) \text{ accepts}] = 0.$$

- $\varepsilon = \frac{1}{2} \implies L \in \textbf{RL}$.

Saks, Zhou '95: \(\textbf{RL} \subseteq \text{DSPACE}(\log 3/2n) \)

- In general, Saks and Zhou showed $L \in \text{DSPACE}(\log 3/2n + \sqrt{\log n \log(1/\varepsilon)})$

- Theorem: $L \in \text{DSPACE}(\log 3/2n + \log n \log \log(1/\varepsilon))$
Suppose language \(L \) can be decided by a randomized log-space algorithm \(A \) that always halts with

\[
x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n)
\]

\[
x \not\in L \implies \Pr[A(x) \text{ accepts}] = 0.
\]

\[
\varepsilon = \frac{1}{2} \implies L \in \text{RL}. \quad \text{Saks, Zhou '95: RL} \subseteq \text{DSPACE}(\log^{3/2} n)
\]
Application: Derandomizing small-success \textbf{RL}

- Suppose language \(L \) can be decided by a randomized log-space algorithm \(A \) that always halts with

\[
 x \in L \implies \Pr[\text{\(A(x) \) accepts}] \geq \varepsilon = \varepsilon(n)
\]

\[
 x \not\in L \implies \Pr[\text{\(A(x) \) accepts}] = 0.
\]

- \(\varepsilon = \frac{1}{2} \implies L \in \textbf{RL}. \) Saks, Zhou ’95: \textbf{RL} \subseteq \textbf{DSPACE}(\log^{3/2} n)

- In general, Saks and Zhou showed

\[
 L \in \textbf{DSPACE}(\log^{3/2} n + \sqrt{\log n \log(1/\varepsilon)})
\]
Application: Derandomizing small-success \textbf{RL}

- Suppose language L can be decided by a randomized log-space algorithm A that always halts with

 \[
 x \in L \implies \Pr[A(x) \text{ accepts}] \geq \varepsilon = \varepsilon(n)
 \]
 \[
 x \notin L \implies \Pr[A(x) \text{ accepts}] = 0.
 \]

- $\varepsilon = \frac{1}{2} \implies L \in \textbf{RL}$. Saks, Zhou ’95: $\textbf{RL} \subseteq \textbf{DSPACE}(\log^{3/2} n)$

- In general, Saks and Zhou showed

 \[
 L \in \textbf{DSPACE}(\log^{3/2} n + \sqrt{\log n \log(1/\varepsilon)})
 \]

- Theorem:

 \[
 L \in \textbf{DSPACE}(\log^{3/2} n + \log n \log \log(1/\varepsilon))
 \]
Derandomization algorithm for small-success RL

\begin{align*}
\text{start} & \bullet \b
Derandomization algorithm for small-success RL

Saks, Zhou '95: Can distinguish in $O(\log^{3/2} n)$ space between $\Pr[reach_v | reach_u] = 0$ vs. $\Pr[reach_v | reach_u] \geq \frac{1}{2^n}$

In second case, add red edge (u, v)
Derandomization algorithm for small-success RL

Saks, Zhou '95: Can distinguish in $O(\log^{3/2} n)$ space between

$$\Pr[\text{reach } v \mid \text{reach } u] = 0 \quad \text{vs.} \quad \Pr[\text{reach } v \mid \text{reach } u] \geq \frac{1}{2n^3}$$
Saks, Zhou ’95: Can distinguish in $O(\log^{3/2} n)$ space between

\[\Pr[\text{reach } v \mid \text{reach } u] = 0 \text{ vs. } \Pr[\text{reach } v \mid \text{reach } u] \geq \frac{1}{2n^3} \]

In second case, add red edge (u, v)
Saks, Zhou ’95: Can distinguish in $O(\log^{3/2} n)$ space between

$$\Pr[\text{reach } v \mid \text{reach } u] = 0 \quad \text{vs.} \quad \Pr[\text{reach } v \mid \text{reach } u] \geq \frac{1}{2n^3}$$

In second case, add red edge (u, v)
Saks, Zhou '95: Can distinguish in $O(\log^{3/2} n)$ space between

$$\Pr[\text{reach } v \mid \text{reach } u] = 0 \quad \text{vs.} \quad \Pr[\text{reach } v \mid \text{reach } u] \geq \frac{1}{2n^3}$$

In second case, add red edge (u, v)
Derandomization algorithm for small-success \textbf{RL} (2)

- Use Savitch’s algorithm to check for path of length $t = \frac{\log(1/\varepsilon)}{\log n}$ from start to acc using red edges

- If $x \in L$, such a path exists by structural lemma

- If $x \not\in L$, no path exists
Derandomization algorithm for small-success \mathbf{RL} (2)

- Use Savitch’s algorithm to check for path of length $t = \frac{\log(1/\varepsilon)}{\log n}$ from start to acc using red edges.

- If $x \in L$, such a path exists by structural lemma.
Derandomization algorithm for small-success RL (2)

- Use Savitch’s algorithm to check for path of length \(t = \frac{\log(1/\varepsilon)}{\log n} \) from start to acc using red edges.
- If \(x \in L \), such a path exists by structural lemma.
- If \(x \notin L \), no path exists.
Restricted case: Derandomizing low-randomness RL

- How many random bits can be derandomized in $O(\log n)$ space?

- Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for $r \leq O\left(\log^2 n \log \log n\right)$, $\epsilon = 1^{\text{poly}(n)}$.

- Nisan, Zuckerman '93: PRG with seed length $O(\log n)$ for $r \leq \text{polylog } n$, $\epsilon = 2^{-\log 0.99 n}$.

- Theorem: HSG with seed length $O(\log(\frac{n}{\epsilon}))$ for $r \leq \text{polylog } n$.

Restricted case: Derandomizing low-randomness \(\textbf{RL}\)

- How many random bits can be derandomized in \(O(\log n)\) space?
- \((\log n)\)-space algorithm that uses \(r\) random bits \(\implies\) ROBP with width \(n\) and length \(r\)
Restricted case: Derandomizing low-randomness \mathbf{RL}

- How many random bits can be derandomized in $O(\log n)$ space?
- $(\log n)$-space algorithm that uses r random bits \implies ROBP with width n and length r
- Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for $r \leq O\left(\frac{\log^2 n}{\log \log n}\right)$, $\varepsilon = \frac{1}{\text{poly}(n)}$
Restricted case: Derandomizing low-randomness RL

- How many random bits can be derandomized in $O(\log n)$ space?
- $(\log n)$-space algorithm that uses r random bits \implies ROBP with width n and length r
- Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for $r \leq O\left(\frac{\log^2 n}{\log \log n}\right)$, $\varepsilon = \frac{1}{\text{poly}(n)}$
- Nisan, Zuckerman '93: PRG with seed length $O(\log n)$ for $r \leq \text{polylog } n$, $\varepsilon = \frac{1}{2^{\log^{0.99} n}}$
Restricted case: Derandomizing low-randomness \textbf{RL}

- How many random bits can be derandomized in $O(\log n)$ space?
- $(\log n)$-space algorithm that uses r random bits \implies ROBP with width n and length r
- Ajtai, Komlós, Szemerédi '87: HSG with seed length $O(\log n)$ for $r \leq O\left(\frac{\log^2 n}{\log \log n}\right)$, $\varepsilon = \frac{1}{\text{poly}(n)}$
- Nisan, Zuckerman '93: PRG with seed length $O(\log n)$ for $r \leq \text{polylog } n$, $\varepsilon = \frac{1}{2^{\log^{0.99} n}}$
- \textbf{Theorem}: HSG with seed length $O(\log(n/\varepsilon))$ for $r \leq \text{polylog } n$
Optimal HSG for $r \leq \text{polylog } n$

- The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan’s PRG.
Optimal HSG for $r \leq \text{polylog } n$

- The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan’s PRG

- Analysis difficulty: Vertex u from structural lemma merely satisfies

 $$\Pr[\text{reach } u] \geq \frac{1}{2nr^2}.$$
Optimal HSG for $r \leq \text{polylog } n$

- The generator: Same as main construction but with the **Nisan-Zuckerman PRG** in place of Nisan’s PRG
- Analysis difficulty: Vertex u from structural lemma merely satisfies

$$\Pr[\text{reach } u] \geq \frac{1}{2nr^2}.$$

- Nisan-Zuckerman PRG has **too much error**
Optimal HSG for $r \leq \text{polylog } n$

- The generator: Same as main construction but with the Nisan-Zuckerman PRG in place of Nisan’s PRG

- Analysis difficulty: Vertex u from structural lemma merely satisfies

\[\Pr[\text{reach } u] \geq \frac{1}{2nr^2}. \]

- Nizan-Zuckerman PRG has too much error

- Solution: Better structural lemma!
Better structural lemma

Let f be a length-r ROBP of any width
Better structural lemma

- Let \(f \) be a length-\(r \) ROBP of any width

- Assume \(\Pr[\text{accept}] = \varepsilon \ll 1/r^2 \)
Better structural lemma

- Let \(f \) be a length-\(r \) ROBP of any width
- Assume \(\Pr[\text{accept}] = \varepsilon \ll 1/r^2 \)
- **Lemma**: There is a subset \(U \) of some layer so that

 \[
 \Pr[\text{reach } U] \geq \frac{1}{2r^2} \quad \text{and} \quad \forall u \in U, \ \Pr[\text{accept} \mid \text{reach } u] \geq \varepsilon r.
 \]
Better structural lemma

- Let f be a length-r ROBP of any width
- Assume $\Pr[\text{accept}] = \varepsilon \ll \frac{1}{r^2}$

Lemma: There is a subset U of some layer so that

\[
\Pr[\text{reach } U] \geq \frac{1}{2r^2} \quad \text{and} \quad \forall u \in U, \; \Pr[\text{accept } | \text{ reach } u] \geq \varepsilon r.
\]

Proof: Similar to the proof of the original structural lemma
Let f be a length-r ROBP of any width

Assume $\Pr[\text{accept}] = \varepsilon \ll 1/r^2$

Lemma: There is a subset U of some layer so that

$$\Pr[\text{reach } U] \geq \frac{1}{2r^2} \quad \text{and} \quad \forall u \in U, \ Pr[\text{accept } \mid \text{reach } u] \geq \varepsilon r.$$

Proof: Similar to the proof of the original structural lemma

(Error of NZ generator) $\ll \frac{1}{2r^2} = \frac{1}{\text{polylog } n}$
Application: Randomness vs. nondeterminism

\[\text{RL} \subseteq \text{NL} \]
Application: Randomness vs. nondeterminism

-RL ⊆ NL

- Theorem: For any $r = r(n)$

\[(RL \text{ with } r \text{ coins}) ⊆\]
Application: Randomness vs. nondeterminism

- **RL \(\subseteq \) NL

- **Theorem:** For any \(r = r(n) \) and any constant \(c \),

\[(\text{RL with } r \text{ coins}) \subseteq \left(\text{NL with } \frac{r}{\log^c n} \text{ nondeterministic bits}\right)\]
Application: Randomness vs. nondeterminism

- **RL ⊆ NL**

- **Theorem:** For any \(r = r(n) \) and any constant \(c \),

\[
(\text{RL with } r \text{ coins}) \subseteq \left(\text{NL with } \frac{r}{\log^c n} \text{ nondeterministic bits} \right)
\]
Simulating r coins with $r/\log^{c}n$ nondeterministic bits
Simulating r coins with $r/\log^c n$ nondeterministic bits

Pseudorandom
Simulating r coins with $r/\log^c n$ nondeterministic bits

\[\varepsilon < \frac{1}{2r} \]
Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$
Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$

Let L be the layer reached after $\log^{c+1} n$ steps
Simulating r coins with $r/\log^c n$ nondeterministic bits (2)

- Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$
- Let L be the layer reached after $\log^{c+1} n$ steps
- Define $U = \{u \in L : \Pr[\text{accept} \mid \text{reach } u] \geq \alpha - \varepsilon\}$
Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$

Let L be the layer reached after $\log^{c+1} n$ steps

Define $U = \{ u \in L : \Pr[\text{accept} | \text{reach } u] \geq \alpha - \varepsilon \}$

Then $\alpha = \Pr[\text{accept}]$

$$= \sum_{u \in U} \Pr[u] \cdot \Pr[\text{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\text{acc} | u]$$
Simulating r coins with $r / \log^c n$ nondeterministic bits (2)

- Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$
- Let L be the layer reached after $\log^{c+1} n$ steps
- Define $U = \{u \in L : \Pr[\text{accept} | \text{reach } u] \geq \alpha - \varepsilon\}$
- Then $\alpha = \Pr[\text{accept}]
 \begin{align*}
 &= \sum_{u \in U} \Pr[u] \cdot \Pr[\text{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\text{acc} | u] \\
 &\leq \Pr[U] + (\alpha - \varepsilon)
 \end{align*}
Simulating r coins with $r / \log^c n$ nondeterministic bits (2)

- Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$
- Let L be the layer reached after $\log^{c+1} n$ steps
- Define $U = \{ u \in L : \Pr[\text{accept} \mid \text{reach } u] \geq \alpha - \varepsilon \}$
- Then $\alpha = \Pr[\text{accept}]
 \begin{align*}
 &= \sum_{u \in U} \Pr[u] \cdot \Pr[\text{acc} \mid u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\text{acc} \mid u] \\
 &\leq \Pr[U] + (\alpha - \varepsilon) \\
 \Pr[U] &\geq \varepsilon.
 \end{align*}
Simulating r coins with $r/\log^c n$ nondeterministic bits (2)

- Proof that this works: Suppose $\Pr[\text{accept}] = \alpha$
- Let L be the layer reached after $\log^{c+1} n$ steps
- Define $U = \{u \in L : \Pr[\text{accept} | \text{reach } u] \geq \alpha - \varepsilon\}$
- Then $\alpha = \Pr[\text{accept}]
 = \sum_{u \in U} \Pr[u] \cdot \Pr[\text{acc} | u] + \sum_{u \in L \setminus U} \Pr[u] \cdot \Pr[\text{acc} | u]
 \leq \Pr[U] + (\alpha - \varepsilon)
 \Pr[U] \geq \varepsilon.$
- So some seed x leads to U. Induct
General theorem: Reduction to $1/\text{poly}$ error case

- Assume efficient PRG for ROBPs with seed length m and error $\frac{1}{r^2}$
General theorem: Reduction to $1/\text{poly}$ error case

- Assume efficient PRG for ROBPs with seed length m and error $\frac{1}{r^2}$

- **Theorem**: For every $\varepsilon > 0$, there’s an efficient HSG for ROBPs with seed length

 $$O(m + \log(nr/\varepsilon))$$
The case polylog $n \ll r \ll n$

- **Theorem**: HSG for width-n, length-r ROBPs with seed length
 \[O \left(\frac{\log(nr) \log r}{\max\{1, \log \log n - \log \log r\}} + \log(1/\varepsilon) \right) \]

- **Proof**: Plug in PRG of [Armoni '98]
Open questions

- **Conjecture**: For any $r = r(n)$, for any constant c,

$$\text{(BPL with } r \text{ coins)} = \left(\text{BPL with } \frac{r}{\log^c n} \text{ coins} \right)$$
Open questions

- **Conjecture**: For any \(r = r(n) \), for any constant \(c \),

\[
(BPL \text{ with } r \text{ coins}) = (BPL \text{ with } \frac{r}{\log^c n} \text{ coins})
\]

- True for \(r \leq 2^{\log^{0.99} n} \) by Nisan-Zuckerman
Open questions

- **Conjecture**: For any $r = r(n)$, for any constant c,

\[(\text{BPL with } r \text{ coins}) = \left(\text{BPL with } \frac{r}{\log^c n} \text{ coins} \right)\]

- True for $r \leq 2^{\log^{0.99} n}$ by Nisan-Zuckerman

- ACR '96: Explicit HSG for circuits $\implies P = BPP$. Similar theorem for BPL?
Open questions

▶ **Conjecture**: For any $r = r(n)$, for any constant c,

$$(\text{BPL with } r \text{ coins}) = \left(\text{BPL with } \frac{r}{\log^c n} \text{ coins} \right)$$

▶ True for $r \leq 2^{\log^{0.99} n}$ by Nisan-Zuckerman

▶ ACR '96: Explicit HSG for circuits \implies $\text{P} = \text{BPP}$. Similar theorem for BPL?

▶ Thanks! Questions?