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Preface

There’s no ulterior practical
purpose here. I’m just playing.
That’s what math is – wondering,
playing, amusing yourself with
your imagination.

Paul Lockhart [2]

In the genre of entertainment through mathematics education, content is
scarce. Hopefully this book helps to remedy that. In each of 101 sections, we
present a fun idea from real analysis. The word “story” in the title is meant
loosely. Don’t expect too many once-upon-a-times. (See Figure 1.)

This is not a real analysis textbook. We de-emphasize math’s role as a tool
in favor of its role as an art form and more generally as a mode of expression.
The things you’ll learn from this book might help you solve actual problems,
but they’re more likely to help you converse with a suitable set of guests at a
cocktail party.

Like pants, the book is divided into two parts. You should find Part I
gentle and accessible, as long as you’ve learned basic calculus. Maybe you’re
a curious high school student, or you work in a technical area outside of pure
math, or you’re currently learning undergraduate analysis. Or maybe you’re
familiar with the material but you want to read some bedtime stories! We
include tidbits of math, history, and philosophy that are absent in standard
presentations; hopefully even advanced students will find Part 1 worth reading.

Part II will be harder to digest. If you’ve taken a thorough undergradu-
ate analysis course or two (or three), you should be able to follow along fine.
Otherwise, well, you’ll understand when you’re older. But you should still get
something out of every section.

As a reader, you’ll have plenty of food for thought, but we hope you won’t
have to think so hard that reading this book becomes a chore. Many proofs are
omitted or just outlined, since who wants a technical proof in the middle of a
bedtime story? We try to provide references for the proofs though. Most can
be found in standard undergraduate or graduate texts on real and functional
analysis.

The title of this book is inspired by “101 Illustrated Analysis Bedtime Sto-
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Figure 1: The approximate composition of this book.

ries” [1], a brilliant work of fiction. This book is both nonfictional and about
R, hence the name. We didn’t include any complex analysis, because we feel
that topics in complex analysis are more like magic tricks than bedtime stories.
(“Can I get a bounded entire volunteer from the audience? Abracadabra, hocus
pocus, tada! You’re constant.”) Happy reading!

Some students
Earth, 2016
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The basics
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Chapter 1

Sets, functions, numbers,
and infinities

OK, dude. Math is the
foundation of all human thought,
and set theory – countable,
uncountable, etc. – that’s the
foundation of math. So even if
this class was about Sanskrit
literature, it should still probably
start with set theory.

Scott Aaronson [1]

This chapter isn’t exactly about real analysis, but it’s fun stuff that you
need to understand anyway. To appreciate the real analysis stories, you need to
know something about the world in which they take place.

1 Paradoxes of the smallest infinity

Are there more even integers or odd integers? How about integers vs. rational
numbers? Our goal for this section is to make sense of and answer questions
like these by explaining how to compare infinities. (See Figure 1.1.)

A set is just a collection of objects, called the elements of the set.1 A set
has neither order nor multiplicity, e.g. {1, 2, 3} = {3, 2, 1, 1}. We write x ∈ X
(read “x in X” or “x is in X”) to say that x is an element of the set X.

To compare two finite sets, you can simply count the elements in each set.
Counting to infinity takes too long though. As you know from playing musical

1Are you unsatisfied with this definition? Strictly speaking, we’re taking sets as our most
primitive objects, so rather than defining them, we should just give some axioms about them
which we will assume. We’ll be assuming “the ZFC axioms.” Look them up if you’re curious.
It shouldn’t matter.

3
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Figure 1.1: How can infinities be compared?
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Figure 1.2: The centipede can compare two finite sets even though it doesn’t know
how to count. The centipede puts a clean sock on each foot until it either runs out
of socks or runs out of feet. If it runs out of socks with some feet still bare, it can
conclude that it has more feet than clean socks, so it’s time to do laundry.

chairs, to compare two finite sets X and Y , you can avoid counting or numbers
and instead use an even more primitive concept: matching. Pair off elements of
X with elements of Y one by one. The sets are the same size if and only if you
end up with no leftover elements in either set. (See Figure 1.2.)

Armed with this observation, way back in 1638, Galileo declared that in-
finities cannot be compared. Here’s his reasoning. (See Figure 1.3.) Suppose
we’re interested in comparing the set of natural numbers N = {1, 2, 3, . . . } with
the set of perfect squares S = {1, 4, 9, . . . }. On the one hand, “obviously,” N
is bigger than S, because S is a proper subset of N, i.e. every perfect square
is a natural number but not vice versa. If we list the natural numbers on the
left and the perfect squares on the right, we can match each perfect square n2

on the right with the copy of that same number n2 on the left, leaving a lot of
lonely unmatched natural numbers.

But on the other hand, instead, we could match each natural number n ∈ N
with the perfect square n2 ∈ S. That would leave no leftovers on either side,
suggesting that N and S are the same size! We get two different answers based
on two different matching rules. It’s as if we play musical chairs twice, with the
same set of people and the same set of chairs both times. In the first game, the
chairs all fill up, with infinitely many losers still standing. But in the rematch,
everybody finds a chair to sit in! Galileo concluded that this is all just nonsense
[5]:

So far as I see we can only infer that the totality of all numbers is
infinite, that the number of squares is infinite, and that the number
of their roots is infinite; neither is the number of squares less than the
totality of all the numbers, nor the latter greater than the former;
and finally the attributes “equal,” “greater,” and “less,” are not
applicable to infinite, but only to finite, quantities.

Galileo was on the right track, but he didn’t get it quite right. The main
takeaway from Galileo’s paradox is that we really do need a definition in order
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Figure 1.3: Galileo’s paradox. With infinite sets, different matching rules can lead
to different outcomes.

to compare infinite sets. In the 1800s, Georg Ferdinand Ludwig Philipp Cantor
provided a good one, declaring that X has the same cardinality as Y if there is
some way to pair off the elements of X with elements of Y , leaving no leftovers
in either set.2 So the definition is “biased” in favor of declaring sets to be the
same size. Cantor says, the appropriate way to handle Galileo’s paradox is to
say yeah, there really are just as many natural numbers in total as there are
perfect squares. Infinity’s weird like that.

To explore cardinality properly, we need to be more precise. Galileo’s para-
dox involved two different ways of associating elements of N with elements of S:
two different binary relations between N and S.

Definition 1. A binary relation consists of a set X (the domain), a set Y (the
codomain), and a set G of ordered pairs (x, y) where x ∈ X and y ∈ Y . (G is
called the graph of the relation.)

Definition 2. A function f : X → Y (read “f from X to Y ”) is a binary
relation with domain X and codomain Y whose graph G satisfies the following:
For every x ∈ X, there is exactly one y ∈ Y such that (x, y) ∈ G. We write
f(x) = y instead of (x, y) ∈ G. Functions are also called maps.

It’s sometimes useful to think of f as a machine, which is given the input
x and produces the output f(x). But this idea doesn’t always make too much
sense, because there isn’t necessarily a formula or algorithm for figuring out
f(x). You’re probably most familiar with functions R→ R, where R is the set

2Since this was such a brilliant insight of Cantor’s, philosophers “honor” him by referring
to it as Hume’s principle.
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Figure 1.4: A binary relation. The domain is N, the codomain is N, and the graph
is the set of pairs (n, n + k) where n, k ∈ N. Of course, this is just the familiar <
relation.

x

y

Figure 1.5: Let Obama be the binary relation with domain R and codomain R whose
graph G is depicted above. Obama is not a function, for two reasons. First, for some
values of x, there are multiple y so that (x, y) ∈ G. (Obama fails the “vertical line
test.”) Second, for some x, there does not exist a y so that (x, y) ∈ G. (Obama is not
“entire.”)
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Figure 1.6: A function f : {1, 2, 3, 4} → {a, b, c}, with e.g. f(4) = c.
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Figure 1.7: The function f : N→ N defined by f(x) = x+ 1 is injective, because no
two arrows point to the same number. In contrast, the function depicted in Figure 1.6
is not injective, because 1 and 2 collide.

of real numbers ( 3
2 , −109,

√
2, π · e, etc.3) These real-valued functions of a real

argument are going to be the main characters in most of our stories.

A collision of a function f : X → Y is a pair of distinct inputs x1, x2 ∈ X
such that f(x1) = f(x2). A function is injective if it has no collisions. An
injective function is lossless: you can recover the input from the output. “An
injection preserves information.” [3]. To put it another way, if X is a set of
people and Y is a set of chairs, an injection X → Y is a seating arrangement
where each person gets her own chair, possibly leaving some chairs empty.

You should think of the codomain Y as the set of “allowed” outputs of f .
The image of f , denoted f(X), is the set of actual outputs of the function,
i.e. f(X) is the set of all f(x) ∈ Y as x ranges over X.4 E.g. the image of the
function depicted in Figure 1.6 is {b, c}. We say that f is surjective if f(X) = Y .

3Unsatisfied by this “definition” as well? We’ll discuss what real numbers really are in
Section 4. For now, just think of points on a number line, or decimal expansions.

4You might have heard the term “range” before. The word “range” is ambiguous. Don’t
use it. When people say “range”, sometimes they mean codomain, and other times they mean
image.
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Figure 1.8: “Sir Jective hits everything with his sword.” –Kevin [12]. See also [11].

In other words, f is surjective if for every y ∈ Y , there exists an x ∈ X so that
f(x) = y. A surjection is a seating arrangement which fills every chair, possibly
with many people sharing a single chair.

A function is bijective if it is injective and surjective. A bijection is also called
a one-to-one correspondence:5 it is the notion of “matching with no leftovers”
that we were looking for. A bijection is a seating arrangement in which every
person is assigned her own chair and every chair is filled. Here’s the official
version of Cantor’s definition.

Definition 3. Suppose X and Y are sets. We say that X has the same car-
dinality as Y if there exists a bijection X → Y . We write |X| = |Y | in this
case.

Example 1. The set of even integers has the same cardinality as the set of
odd integers, because f(2k) = 2k+ 1 is a bijection between these two sets. (See
Figure 1.10.) This should be intuitive, since even and odd seem to be “on equal
footing.”

5Warning: some mathematicians use this phrase “one-to-one correspondence” to mean
bijection, and then in the same breath use the term “one-to-one” to mean injection (note
the omission of the word “correspondence.”) Some say “f maps X onto Y ” to say that f
is surjective, while the subtly different “f maps X into Y ” merely means that X and Y
are the domain and codomain of f ! It’s a terminological disaster. Much better to stick
with the injective/surjective/bijective terms, invented by the group of mathematicians known
pseudonymously as Bourbaki.
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x

f(x)

Figure 1.9: The function f(x) = x2 is not surjective when thought of as a function
R→ R, because negative numbers are not part of its image. However, it is surjective
if we think of it as a function R→ [0,∞).
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Figure 1.10: The bijection from the set of even integers to the set of odd integers.
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Example 2. The set of all integers (positive, negative, and 0) has the same
cardinality as N (the set of positive integers). To see why, observe that we can
reorder the integers as follows (see also Figure 1.11):

0,−1, 1,−2, 2,−3, 3, . . .

The function f(n) which gives the nth element in the list is a bijection from
N to the set of integers. We denote the set of all integers by Z (which stands
for “Zahlen”, the German word for number). So what we’ve just shown is that
|Z| = |N|. This is counterintuitive: it feels like there are about “twice as many”
integers as positive integers.

0 1 2 3−3 −2 −1

0 1 2 3

−3

−2

−1

0 1 2 3

−3−2−1

0 1 2 3−3−2−1

Figure 1.11: To count the integers, we fold Z in half.
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Figure 1.12: The proof that |Q| = |N|. We make an infinite table of fractions, with
the row index being the denominator and the column index being the numerator.
We circle all of the reduced fractions, and then we can make a list of all the rational
numbers in the zig-zag order indicated by the arrows. A small simplification made in
this illustration is that it omits the nonpositive rational numbers.

Example 3. The set Q of all rational numbers (i.e. fractions of integers) has the
same cardinality as N! This seems horribly wrong, because there are infinitely
many rational numbers between every two integers. It’s sufficiently surprising
that at least one high school textbook [2] boldly asserts that Q and N have
different cardinalities. But in fact, we can enumerate the rational numbers as
follows. Every rational number can be written as a reduced fraction ±pq , where
p is a nonnegative integer and q is a positive integer. First, we list all rational
numbers with p+ q = 1 (there’s just one: zero.)

0

1

Then, we list all rational numbers with p+ q = 2:

0

1
,

1

1
,−1

1

Then all rational numbers with p+ q = 3:

0

1
,

1

1
,−1

1
,

1

2
,−1

2
,

2

1
,−2

1

Etc. etc. Every rational number will eventually be listed. Just like in the case
of Z, this reordering immediately gives a bijection between Q and N, showing
that |Q| = |N|. (See Figure 1.12.)

We call a set countably infinite if it has the same cardinality as N. (If
you carefully count the elements in a countably infinite set, it’s false that you
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Figure 1.13: Hilbert’s paradox of the Grand Hotel. There are countably infinitely
many rooms, all of which are occupied, yet the hotel is still accepting more guests.
When a new guest arrives, the hotel asks the patron in room n to move to room n+ 1,
with the net effect being that room 1 is freed up for the new arrival. Do you see how
the hotel can deal with countably infinitely many guests who all arrive simultaneously?
(Credit for the “No vacancy, guests welcome” sign: [8])

will eventually have counted every element, but it’s true that for each element,
you will eventually have counted that element.) Countable infinity may be the
smallest infinity, but it’s got teeth. (See Figure 1.13.)

2 Uncountability

A simple observation: a set is finite if and only if you can write down the entire
set, after giving each element a name. There’s a similar characterization of
countable sets. (A set is countable if it is either finite or countably infinite.) If
X is countable, maybe you can’t write down the entire set, but at least you can
write down an arbitrary element of X.

Proposition 1. A set X is countable if and only if each element of X can be
written down. More precisely, X is countable if and only if there is some finite
alphabet Σ and an injection from X to the set Σ∗ of finite strings of symbols
from Σ.
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Geology rocks.

Vacuuming sucks.

Don’t drink and derive.

Two wrongs can make a riot.

Why is the letter before Z?

Statisticians say mean things.

Your calendar’s days are numbered.

A plateau is the highest form of flattery.

...

Two fish are in a tank. One says to the other, ‘‘Do

you know how to drive this thing?’’

...

Bobby Fischer got bored of playing chess with

Russians. He asked the association to fix his next

match with some other Europeans, writing, ‘‘How about

a Czech mate?’’
...

Figure 1.14: The set of all puns is countable, because every pun can be written
down, and hence the puns can be enumerated: we start with the shortest, then move
on to longer and longer puns. (We deserve no credit for the puns listed.)

Before the proof, some examples: We can write down an arbitrary element
of N using the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and standard decimal no-
tation. Similarly, to write down elements of Z and Q, just throw in two more
symbols, − and /. (That was a much easier proof that Q is countable than the
zig-zag argument we did before!)

Proof of Proposition 1. If X is countable, then we can index each element of
X with a natural number, which we can think of as its name. Writing down
natural numbers is easy enough.

For the converse, we’ll show that Σ∗ is countable. To enumerate Σ∗, first
list all the length-0 strings (there’s only one: the empty string.) Then list all
the length-1 strings, then the length-2 strings, etc. There are only finitely many
strings of each length, so this gives a bijection N→ Σ∗. (See Figure 1.14.)

Proposition 1 reveals tons of countable sets: the set of all finite subsets of
Z, the set of all polynomials with integer coefficients, the set of all possible
computer viruses, the set of all possible recipes describing yummy food, the set
of all love notes which can ever be written, the set of all theorems, the set of
all proofs, the set of all stories, the set of all finite mazes, the set of all vague
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philosophical questions, the set of all possible digital photographs, the set of all
physical laws that we have any hope of making sense of...

Are there any sets that are uncountable – even bigger than N? Of course,
by the that’s-why-the-word-countable-was-invented principle. Where do we find
one of these super-infinite sets, despised by Count von Count? Proposition 1
gives a hint: it ought to require an “infinite amount of information” to specify an
element of the set. A sequence is a function with domain N. If we are thinking
of A as a sequence, we write An instead of the functional notation A(n).

Theorem 1. Let 2N denote the set of all sequences of zeroes and ones. Then
2N is uncountable.

The proof, due to Cantor, is unquestionably one of the greatest proofs of all
time. Remember that the definition of cardinality was biased in favor of sets
having the same cardinality, which makes it especially tricky to prove that two
sets have different cardinalities. We have to prove that there does not exist a
bijection N → 2N. Lots of people like to say that “you can’t prove a negative”
[4, 14, 10]. But we’re about to do exactly that.

Proof. Consider any arbitrary function f : N → 2N; we will show that f is not
a surjection.

We can represent f as a table, like the example in Figure 1.15. Let A be the
diagonal sequence, defined by An = f(n)n – that is, the nth term of A is the
nth term of the nth sequence. Let B be the opposite of A:

Bn =

{
0 if An = 1

1 if An = 0.
(1.1)

By construction, for every n ∈ N, f(n) differs from B in its nth term. Thus, B
is not in the image of f , so f is not surjective!

Here’s a more familiar uncountable set:

Theorem 2. The set R of all real numbers is uncountable.

Proof. Define f : 2N → R by

f(a1, a2, . . . ) = the real number represented by 0.a1a2 . . . in base 10.

Then f is injective, and hence f is a bijection between 2N and f(2N) ( (−1, 1).
This shows that some subset of R is uncountable, which implies that R is un-
countable.

The diagonalization argument in the proof of Theorem 1 is extremely clever,
and it took Cantor a long time to figure it out. After struggling for many years

to figure out whether |R| ?
= |N|, he asked Richard Dedekind for help in 1873, but

Dedekind couldn’t solve the problem either. Cantor eventually published a proof
that R is uncountable in 1874. This early proof, which we’ll see in Section 15,
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n f(n)
1 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 1 1 1 1 . . .
3 0 1 0 1 0 1 0 1 0 1 . . .
4 0 1 0 0 1 0 0 0 1 0 . . .
5 1 1 1 1 0 1 0 1 0 0 . . .
6 0 1 0 0 0 1 1 0 1 0 . . .
7 1 0 0 1 0 0 1 0 0 1 . . .
8 0 1 1 1 1 1 1 1 1 1 . . .
9 1 0 1 1 1 1 1 1 1 1 . . .
10 0 0 0 1 1 1 0 0 0 1 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .

A 0 1 0 0 0 1 1 1 1 1 . . .
B 1 0 1 1 1 0 0 0 0 0 . . .

Figure 1.15: How the proof of Theorem 1 works for one example function f . The
sequence B cannot be in the image of f , because for every n, B and f(n) disagree at
their nth position.

was less slick than the proof that we just saw. Cantor finally published his
diagonalization argument in 1891 [6].

Theorem 2 is profound. Obviously some numbers, like π, have infinite deci-
mal expansions. We still manage to write down such numbers, by using special
notation, like the symbol π. But Theorem 2 tells us that no matter how much
notation we make up, there will still be some numbers which cannot be written
down! As Shakespeare said,

There are more things in heaven and earth, Horatio, than are dreamt
of in your philosophy.

For example, there must exist noncomputable numbers – numbers for which
there is no algorithm for listing the digits of the number. Numbers which turn
up “in the wild” tend to be computable (π, e,

√
2, etc.) But the noncomputable

ones are out there!
Notice that in the proof of Theorem 2, we actually showed that the interval

(−1, 1) is already uncountable! Intuition suggests that R has a greater cardinal-
ity than a puny little interval like (−1, 1), but you’ve probably learned by now
that your intuition can be misleading in this business:

Proposition 2. For any real numbers a < b, |(a, b)| = |R|.

Proof sketch. The function f(x) = tan(x) is a bijection (−π2 ,
π
2 ) → R. (See

Figure 1.17.) By translating and scaling like in Figure 1.16, you can get a
bijection (a, b)→ R.

Proposition 2 is bizarre, because we like to think of intervals as having
“different sizes,” e.g. (0, 2) should be twice as big as (0, 1). We’ll address that
idea in depth in Chapter ??.
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0 1

0 2

Figure 1.16: f(x) = 2x is a bijection (0, 1)→ (0, 2).

0

10

R

Figure 1.17: Comparing (0, 1) and R.

To illustrate the care that must be taken to show that one set is bigger than
another, we conclude this section with some philosophical nonsense.

SIMPLICIO: I’ve discovered a proof that there are more bad ex-
periences than good experiences. Take any good experience, and
imagine altering it by setting yourself on fire. Now it’s a bad ex-
perience! So there are at least as many bad experiences as good
experiences, and of course there are some bad experiences in which
you’re not on fire, so the inequality is strict.

SALVIATI: No, that won’t do. You’ve provided a map from the set
of good experiences to the set of bad experiences (the “set-yourself-
on-fire” map) which is injective, but not surjective. Your conclusion
that there are more bad experiences than good experiences would
only be justified if we were dealing with finite sets. (After all, the
map f : N → N defined by f(x) = x + 1 is injective but not sur-
jective! You don’t think that N is bigger than itself, do you?) But
in actual fact, there are infinitely many experiences. Just consider
the experience of holding n marbles, for n ∈ N. There’s a different
experience for each n.

SIMPLICIO: No no, you’ve misunderstood what I mean by “ex-
perience.” You thought that I meant a situation, which the subject
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of the situation would judge to be good or bad. But I meant the
perception of that situation. That is, an experience is a brain state,
or rather a sequence of brain states, bounded in length by the human
lifespan. I claim that there are only finitely many experiences. For
example, if n and m are sufficiently large, then holding n marbles
is indistinguishible from holding m marbles, and hence they are the
same experience. My proof is salvaged.

SALVIATI: Ah, but if “experience” means sequence of brain states,
then the set-yourself-on-fire map is not injective! Consider two good
experiences in which you are watching a sunset. In one experience, a
squirrel runs by at some distance from you. In the other experience,
there is no squirrel. When you set yourself on fire, these cease to be
distinct experiences, because you wouldn’t notice the squirrel if you
were on fire!

3 Cantor’s infinite paradise of infinities

Definition 4. For sets X,Y , we say that |X| ≤ |Y | if there exists an injection
X → Y .

You’ll be happy to know that every two sets can be compared in this way.

Theorem 3. For any two sets X and Y , |X| ≤ |Y | or |Y | ≤ |X|.

(See [9] for a proof.) You’ll also be happy to know that if |X| ≤ |Y | and
|Y | ≤ |X|, then |X| = |Y |.

Theorem 4 (Cantor-Bernstein-Schröder). Suppose X and Y are sets. If there
is an injection f : X → Y and another injection g : Y → X, then there exists a
bijection h : X → Y .

Despite the theorem’s name, Dedekind was the first one to prove it, and
Cantor never gave a proof for it (though he was the first to state it.) The
proof of Theorem 4 is notoriously difficult, but in principle, it requires no deep
mathematics education to understand. If you want to confuse yourself, read one
of these proofs: [TODO references]

We’ve seen that there are at least two different kinds of infinity (countable
and uncountable.) Obvious question: is there a biggest infinity?

Definition 5. For a set X, the power set of X (denoted P(X)) is the set of all
subsets of X. For example, if X = {1, 2, 3}, then

P(X) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

(The symbol ∅ denotes the empty set, the set with no elements.)

Our next theorem implies that no matter how huge a set you come up with,
there is always an even huger set. The proof is just a slightly more abstract
version of the diagonalization argument that revealed uncountability.



3. CANTOR’S INFINITE PARADISE OF INFINITIES 19

Theorem 5 (Cantor’s theorem). For every set X, |X| < |P(X)|.

Proof. Consider an arbitrary function f : X → P(X). Let A be the diagonal
set, i.e.

A = {x ∈ X : x ∈ f(x)}.

The above bit of notation is read “the set of all x in X such that x is in f(x),”
and it means exactly what it sounds like. Let

B = X \A = {x ∈ X : x 6∈ A}.

Fix any x ∈ X; we’ll show that f(x) 6= B. If x ∈ f(x), then x ∈ A, so x 6∈ B.
If x 6∈ f(x), then x 6∈ A, so x ∈ B. Either way, f(x) disagrees with B on x.
Hence, B is not in the image of f , so f is not surjective.

(“Wait,” you ask, “isn’t X = ∅ a counterexample to Cantor’s theorem?” No,
because P(∅) = {∅}, which has one element, whereas ∅ has zero elements.)

Cantor’s theorem uncovers a rabbit hole to the wonderland of set theory.
(“No one shall expel us from the Paradise that Cantor has created.” –David
Hilbert [7]) This book is supposed to be about real analysis, so we’re not going
to explore the rich landscape of infinities in depth, but we’ll visit it as tourists
and see some sights, to give you a bit more intuition about infinity.

We’ve defined expressions like |X| ≤ |Y |, but we haven’t actually defined the
object |X| by itself. If X is finite, |X| is just the number of elements in the set
X. For X infinite, it’s a bit trickier to give a suitable definition; suffice it to say
that one can be given. These objects |X| are called cardinal numbers. Despite
what you may have heard, infinity is a number, or rather many numbers.6 It’s
just not a real number, the kind of number with which you are most familiar.

So what’s to be done with all these numbers? Arithmetic!

3.1 Cardinal addition

When you were a newborn baby learning arithmetic of natural numbers, you
were taught that n+m is the number of apples you have in total if you combine
a pile of n apples with a pile of m apples. Notice that there’s a hidden technical
assumption, which is that the two piles of apples are disjoint, i.e. they don’t
share any apples in common! (See Figure 1.18.)

Even with infinitely many apples, the definition still stands. For two sets
X and Y , the union X ∪ Y is the set of all x such that x ∈ X or x ∈ Y .
The intersection X ∩ Y is the set of all x such that x ∈ X and x ∈ Y . (See
Figure 1.19.) If X and Y are disjoint (i.e. X ∩ Y = ∅), we define

|X|+ |Y | = |X ∪ Y |.

If X and Y are not disjoint, just rename the elements of each set, giving new
sets X ′ and Y ′ which are disjoint satisfying |X| = |X ′| and |Y | = |Y ′|.

6This is actually one of many senses in which infinity is a number. See also ordinal numbers,
hyperreal numbers, surreal numbers.
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Figure 1.18: Despite what these two piles of apples may suggest, 5 + 4 6= 7.

X Y X ∪ Y

X ∩ Y X \ Y Y \X

Figure 1.19: The Boolean set operations: union, intersection, and set difference.
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Our “fold in half” proof that |N| = |Z| can easily be adapted to show that

|N|+ |N| = |N|.

We also have |R|+ |R| = |(0, 1)|+ |(0, 1)| ≤ |(0, 2)| ≤ |R|, and hence

|R|+ |R| = |R|.

These two calculations are not coincidences: it turns out that for any infinite
set X,

|X|+ |X| = |X|.

Adding an infinity to itself doesn’t do anything!

3.2 Cardinal multiplication

As an infant, you were taught that n ·m is the number of apples in an n ×m
grid of apples. In general, for two sets X and Y , the Cartesian product X × Y
is the set of all ordered pairs (x, y) where x ∈ X and y ∈ Y . For example, R×R
is the real plane. We define

|X| · |Y | = |X × Y |.

Our “zig-zag” proof that |N| = |Q| can easily be adapted to show that

|N| · |N| = |N|.

As we’ll discuss in Section ??,

|R| · |R| = |R|.

Again, these are not coincidences: for any infinite set X,

|X| · |X| = |X|.

Even multiplying an infinity by itself doesn’t do anything!

3.3 Cardinal exponentiation

As an infant, you were taught that nm is the repeated product n ·n ·n · · ·n, with
n appearing m times. Combinatorially, this is the number of different ways to
fill out an m-question multiple choice exam where each question has n options.
In other words, if we fix a set N with n elements and a set M with m elements,
then nm is the number of functions M → N .

In general, for two sets X and Y , we define Y X to be the set of functions
X → Y . For example, earlier, we denoted the set of all binary sequences by
2N. If you identify the number 2 with the two-element set {0, 1}, our notation
makes good sense. We define

|Y ||X| =
∣∣Y X ∣∣ .
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We saw that addition and multiplication are pretty boring for infinite car-
dinal numbers. Is exponentiation similarly boring? You can specify a subset
A ⊆ X by giving its indicator function χA : X → {0, 1} defined by

χA(x) =

{
0 if x 6∈ A
1 if x ∈ A.

(χA(x) “indicates” whether x is in A.) Hence, Cantor’s theorem implies that
|X| < 2|X| for every set X. So cardinal exponentiation is not boring – unlike
addition and multiplication, exponentiation can actually get you somewhere.
You’ll be happy to know that standard exponent rules, like (ab)c = ab·c, hold
for cardinal numbers.

We use the notation i0 (pronounced “bet nought”) to denote |N|, the car-
dinality of the countably infinite. (Here i is the second7 letter of the Hebrew
alphabet.) Then we define i1 = 2i0 , and more generally in+1 = 2in , giving
a whole sequence of increasingly enormous infinite cardinal numbers. It turns
out that |R| = i1. In “normal mathematics” (i.e. outside set theory), the only
infinite cardinalities you’re likely to encounter are i0, i1, i2, and maybe i3.

That’s all we’re going to say8 about sets and functions, the basic foundations
of math that they ought to teach in middle school. It’s time to discuss the
foundations of real analysis in particular.

4 The real deal

Real9 numbers seem like awfully familiar friends, but evidence suggests that
different people have different concepts in mind when they talk about numbers.
Back in the 5th century B.C., the Pythagoreans had a confused conception of
number. On the one hand, they thought that all numbers were either integers
or fractions (i.e. rational numbers.) But on the other hand, the Pythagoreans
wanted to use numbers to describe Euclidean geometry, including, of course,
the famous Pythagorean theorem. This led to trouble:

Proposition 3.
√

2 is irrational. That is, there is no rational number p
q so

that
(
p
q

)2

= 2.

Proof. Assume for a contradiction that p2 = 2q2, where p
q is a reduced fraction.

Then p2 is even, which implies that p is even, and hence p2 is divisible by 4.

7The cardinality of N is more often denoted ℵ0; here ℵ is the first letter of the Hebrew
alphabet. We prefer the i notation, because the other ℵ numbers are much more confusing.
Look up the continuum hypothesis and the generalized continuum hypothesis if you’re curious.

8If you’d like a more detailed exposition of this sort of “background material” that most
math books assume you already know, you might try Chapter 1 of James R. Munkres’ book
“Topology” [13]. The rest of that book is quite good too, if you’re interested in learning about
topology!

9The word “real” here doesn’t actually mean anything. (It’s Descartes’ fault.) Imaginary
numbers and real numbers are equally nonfictional. Real numbers should’ve been called
“continuum numbers” or “line numbers” or something. Too late now.
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1

?

?

1

Figure 1.20: Uh oh, rational numbers and triangles are not friends.

Hence 2q2 is divisible by 4, so q2 is even, which implies that q is even. But that
contradicts the fact that p

q is reduced.

Legend has it that the irrationality of
√

2 was discovered by Hippasus while
he was at sea, and his fellow Pythagoreans were so enraged that they threw
him into the ocean, where he drowned. Unfortunately, as far as we can tell, the
legend is just made up.

In modern times, many people claim that 0.999 . . . 6= 1 when asked. (Over
80% in one small study [15].) Mathematicians, on the other hand, are all con-
fident that 0.999 . . . = 1. (More on this in Section 6.) Are non-mathematicians
just not thinking clearly when they say that 0.999 . . . is “infinitesimally smaller”
than 1? It’s more reasonable to suggest that they simply were never told clearly
what numbers are and how they are represented, so they came up with their
own mental model which doesn’t match the standard definitions used by math-
ematicians. Let’s clear up these definitional issues now.

Definition 6 (Real numbers). A real number system is a 4-tuple10 (R,+, ·,≤),
where R is a set, + and · are binary operations on R, and ≤ is a binary relation
on R, satisfying the “real number axioms.”

Well that wasn’t a very good definition. We’d better tell you what the real
number axioms are, eh? Most of them are pretty boring. You should just skim
them to get the flavor, except for Axiom 8 which is important. The first four
axioms say that arithmetic works like it ought to.

Axiom 1. Addition is commutative (x+y = y+x) and associative ((x+y)+z =
x + (y + z).) There is an additive identity 0 (x + 0 = x) and every number x
has an additive inverse −x (x+−x = 0.)

Axiom 2. Multiplication is commutative and associative, there is a multiplica-
tive identity 1, and every nonzero number x has a multiplicative inverse 1

x .

Axiom 3. Multiplication distributes over addition (x · (y + z) = x · y + x · z.)

Axiom 4 (Everyone’s favorite axiom). 1 6= 0.
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Figure 1.21: Number systems satisfying Axioms 1 through 4 (with no order struc-
ture) are called fields. There are a lot of bizarre fields which are nothing like R. For
example, Z/7Z is the field you get by coiling Z up into a circle, pretending that n
and n+ 7 are the same number for every n. Division in this field is pretty weird, e.g.
1
3

= 5, since 5 · 3 = 15 = 1. The point is, Axioms 5 through 8 are important.

The last four axioms deal with the order structure of R.

Axiom 5. The order is transitive (x ≤ y and y ≤ z implies x ≤ z), antisym-
metric (x ≤ y and y ≤ x implies x = y), and total (for every x, y, either x ≤ y
or y ≤ x.)

Axiom 6. If x ≤ y, then x+ z ≤ y + z.

Axiom 7. If x ≥ 0 and y ≥ 0, then x · y ≥ 0.

So far, Q has satisfied all of these axioms. From the axioms we’ve listed
so far, you can derive familiar facts like “zero times anything is zero” and “a
negative times a negative is a positive.” Yawn. There’s one more axiom, and
it’s the fun one. When is the last moment of Sunday? Midnight? No, that’s
Monday already...

Definition 7. Fix X ⊆ R. We say a ∈ R is an upper bound for X if a ≥ x for
all x ∈ X.

Definition 8 (Supremum). Fix X ⊆ R. A number b ∈ R is called the supremum
of X if b is the least upper bound of X. That is, b is an upper bound for X, and
if a is another upper bound for X, then b ≤ a.

The supremum of X is denoted supX; the abbreviation sup is pronounced
like “soup.” If a set X has a maximum, then supX = maxX. Some sets, like
(0, 1), have no maximum, but still have a supremum; sup(0, 1) = 1. There is
no last moment of Sunday; the set of moments which are on Sunday does not
have a maximum. But it does have a supremum: midnight. You might say that
midnight is the sup du jour! (Ba dum tss.)

10An n-tuple is just an ordered list of n objects. So all we’re saying is that a real number
system has four parts: R, +, ·, and ≤.



4. THE REAL DEAL 25

Figure 1.22: Q is like Swiss cheese: it’s riddled with holes. R is like cheddar cheese:
it tastes good grated over scrambled eggs.

Figure 1.23: The countable set S = { 1
n

: n ∈ N}. This set has a maximum,
maxS = supS = 1. It has no minimum, but inf S = 0.

Axiom 8 (Supremum axiom). If X ⊆ R is nonempty and X has an upper
bound, then X has a supremum.

The supremum axiom is crucial in real analysis. It is the reason that
(Q,+, ·,≤) is not a real number system. To see why, consider the set S =
{r ∈ Q : r2 < 2}. The supremum of S ought to be

√
2. But if Q is our whole

world, then there is no square root of 2! When S is considered to be a subset
of Q, it has no supremum: for every rational number a with a2 ≥ 2, there is a
smaller rational number b which also satisfies b2 ≥ 2. This is why we prefer R
to Q. In some sense, Q is riddled with holes. The supremum axiom asserts that
all holes are filled in. (See Figure 1.22.)

The infimum of a set X (denoted inf X) is the greatest lower bound of X.
Just like the concept of supremum is a generalization of maximum, the concept
of infimum generalizes that of minimum. It follows from the real number axioms
that any nonempty set with a lower bound has an infimum. (See Figure 1.23.)

So that concludes the definition11 of what a real number system is. But
we’re not done yet. Usually, people speak of the real number system, and we
need to justify that terminology. Does there even exist a real number system?
(If some of the real number axioms contradict each other, we are in serious
trouble!)

Theorem 6. Thankfully, there does exist a real number system.

We’ll sketch a proof of Theorem 6 in Section 5. So there’s a real number
system, but is it unique? Not quite. Let ∗ denote some fixed object, e.g. the

11Mathematicians summarize the whole definition by saying that a real number system is
a “complete ordered field.”
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empty set, or Abraham Lincoln, or radical freedom. Given one real number
system (R,+, ·,≤), we can build another real number system. Our new set of
real numbers is R× {∗}, i.e. the set of all pairs (x, ∗) where x ∈ R. Arithmetic
is defined by (x, ∗) + (y, ∗) = (x + y, ∗) and (x, ∗) · (y, ∗) = (x · y, ∗), and the
order is defined by saying that (x, ∗) ≤ (y, ∗) if and only if x ≤ y.

But that’s dumb. All we did is rename each number x to (x, ∗), which
shouldn’t count as building a whole new real number system. “A rose by any
other name would smell as sweet.” This renaming silliness is the only thing
that goes wrong; any two real number systems are isomorphic, i.e. each can be
obtained from the other by renaming the elements. Precisely:

Theorem 7. The real number system is unique up to ordered field isomorphism.
That is, if (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) are two real number systems, then
there exists a bijection f : R1 → R2 so that

• For all x, y ∈ R1, f(x+1 y) = f(x) +2 f(y).

• For all x, y ∈ R1, f(x ·1 y) = f(x) ·2 f(y).

• For all x, y ∈ R1, x ≤1 y if and only if f(x) ≤2 f(y).

(For example, f(x) = (x, ∗) is an isomorphism R→ R× {∗}.) The proof of
Theorem 7 is not too hard but somewhat tedious, so we’ll omit it.

So now we can speak of the real number system R, with the slight caveat
that you’re only allowed to ask questions which can be phrased in terms of
+, ·, and ≤. The reals are only defined up to ordered field isomorphism, so
questions like “Is

√
2 ⊆ π?” aren’t meaningful. You might be thinking, “Duh,√

2 and π aren’t sets,” but it’s not that simple. In any particular real number
system,

√
2 and π are sets! Under the hood, everything’s a set. The question’s

not meaningful because in some real number systems (e.g. “Dedekind cuts”)√
2 ⊆ π, but in others (e.g. “Cauchy sequences”)

√
2 6⊆ π. On the other hand,

questions like “Does every real number have a real square root?” make perfect
sense, because the answer is the same (“no”) in every real number system.
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Figure 1.24: In ancient times (circa 1970), engineers used slide rules to quickly mul-
tiply and divide numbers. A simple “circular slide rule” is depicted; the gray portion
rotates relative to the white portion. The depicted position corresponds to multiplica-
tion/division by 2. Slide rules work because the exponential function f(x) = ex is an
isomorphism between the additive structure of R and the multiplicative structure of
(0,∞), because of the standard exponent rule ex+y = ex · ey. (This is a slightly sim-
pler kind of isomorphism than the ordered field isomorphism of Theorem 7, because
here we’re just preserving the structure of one operation, whereas in Theorem 7 we
preserved the structure of two operations and a relation.)
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5 Building real numbers (Dedekind cuts)

Let’s start from Q and build a real number system, thereby sketching a proof
of Theorem 6. Dedekind observed that between any two real numbers, there is
a rational number. Therefore, to specify a point X on a real number line, it
suffices to specify the set of rational numbers less than X. So we can just define
the real numbers to be the appropriate sets of rational numbers.

Definition 9. A Dedekind cut is a set X ⊆ Q with the following properties:

1. (X is closed downward) If a < b and b ∈ X, then a ∈ X.

2. (X has no maximum) If a ∈ X, there is some b ∈ X with a < b.

3. (X is nontrivial) ∅ 6= X 6= Q.

For example, {x ∈ Q : x < 0 or x2 < 2} is a Dedekind cut, which will be the
real number

√
2. (See Figure 1.25.) To officially define our real number system,

we define R to be the set of all Dedekind cuts. We identify each rational number
x with the real number X = {y ∈ Q : y < x}. If X and Y are Dedekind cuts,
then we set

X + Y = {x+ y : x ∈ X, y ∈ Y }.

We say that X ≤ Y if X ⊆ Y . Multiplication is a little more annoying because
of minus signs. If X,Y ≥ 0, then we define

X · Y = {x · y : x ∈ X, y ∈ Y, x ≥ 0, y ≥ 0} ∪ {x ∈ Q : x < 0}.

We define −X by
−X = {x− y : x < 0, y 6∈ X}.

And now we can extend our definition of multiplication to all reals by setting
(−X) · Y = X · (−Y ) = −(X · Y ) and (−X) · (−Y ) = X · Y . It’s tedious, but it
can be verified that these definitions make (R,+, ·,≤) a real number system.

There are lots of alternative constructions of R. For example, the Cauchy
sequence construction, discovered by Cantor [TODO cite], is more in the spirit
of real analysis. Cantor’s idea is based on the fact that every real number is a
limit of a sequence of rational numbers. This suggests defining real numbers to
be convergent sequences of rational numbers. The trouble is that this is circular
– “convergent” here means converging to a real number ! So instead, Cantor
defined real numbers to be those sequences of rational numbers which “deserve”
to converge to something. You might enjoy reading about this construction in
more detail [TODO reference], but you should read Section 7 first.
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Figure 1.25: The Dedekind cut identified with
√

2 is the set of shaded rational
numbers.

6 The Cantor set

Time for our first legitimate real analysis problem. A set E ⊆ R is dense if it
intersects every open interval J ⊆ R. For example, Q is dense (this is why it’s
surprising that Q is countable, and this is why the Dedekind cut construction
works.) More generally, if I ⊆ R is an open interval, we say that E is dense
in I if E intersects every subinterval J ⊆ I. For example, Q ∩ [0, 1] is dense in
I = (0, 1), but not in I ′ = (0, 2).

A set E is nowhere dense if there is no interval I in which E is dense.
A nowhere dense set is just like your friend’s arguments against your favorite
political positions: no matter which part you zoom in on, you can see a gaping
hole. For example, Z is nowhere dense. For another example, the set { 1

n : n ∈ N}
is nowhere dense. (See Figure 1.26.) In some sense, a nowhere dense set is
small. How does this notion of size interact with our earlier notion, cardinality?
Q shows that countable does not imply nowhere dense. Does nowhere dense
imply countable?

Figure 1.26: The set S = { 1
n

: n ∈ N} is nowhere dense. Given any interval (such as
the blue interval), there is a subinterval (in red) which completely misses S.
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Nope! The simplest counterexample, discovered by Henry Smith in 1874, is
denoted ∆ and called the Cantor set. (Cantor popularized it.) To construct ∆,
we start with the interval [0, 1], and remove a bunch of open intervals. In the
first iteration, we remove the middle third interval ( 1

3 ,
2
3 ). This leaves us with

the two intervals [0, 1
3 ] and [ 2

3 , 1]. Next, we remove the middle third interval
from each remaining interval, so that we’re left with four intervals. We continue
the process of removing the middle third of each remaining interval ad infinitum,
and then ∆ is everything left over. That is, if we let ∆n be the set that we have
after n iterations of this process, then ∆ = ∩n∆n, the set of points which are
in every ∆n. The first few iterations are shown in Figure 1.27.

∆0
0 1

∆1
0 11

3
2
3

∆2
1
9

7
9

8
9

0 11
3

2
3

2
9

Figure 1.27: Construction of the Cantor set.

It’s easy to see that ∆ is nowhere dense: for any open interval I that inter-
sects [0, 1], there is a sufficiently large n so that the nth step of constructing ∆
involves removing a subinterval of I. In fact, after removing all those intervals,
how much of [0, 1] is left over? The sum of the lengths of the intervals that make
up ∆n is ( 2

3 )n, so if we take a limit as n → ∞, we see that the “total length”
of ∆ is 0. (We’ll come back to this calculation in Chapter ??.) So ∆ must be
empty... right? Wrong! For example, 0, 1 ∈ ∆. In fact, ∆ has infinitely many
points: all the endpoints, which include for example any number of the form
1

3n , are in ∆.

But to really understand |∆|, we need to take a detour. So far, we’ve talked
about real numbers in the abstract. When you met R as a child, real numbers
were presented to you in the guise of decimal expansions. A decimal expansion
is a string, something like 3.14159265 . . . , which (by definition) represents12 the
real number

3 +
1

10
+

4

100
+

1

1000
+

5

10000
+ · · ·

(We haven’t talked about limits yet, but since all the terms are nonnegative,
you can interpret this infinite sum as the supremum of the set of partial sums.)

Proposition 4. Every real number has a decimal expansion.

12You might complain that we haven’t explained which real number is referred to by strings
like 3, 10, 4, 100, etc.! Well, you understand which integers are referred to by such strings,
right? And the real number 1 is part of the axioms. So identify the positive integer n with
the real number 1 + 1 + · · ·+ 1 (with n ones.)
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Figure 1.28: 0.999 . . . apples are depicted. Or maybe “0.999 . . . apple is depicted”?

(We’ll skip the proof.) How about uniqueness? Annoyingly, some real num-
bers have two different decimal expansions. The real number 1 can also be
represented as 0.999 . . . , where there are an infinite number of nines after the
decimal point. Do you doubt it? Let’s prove it. Certainly 1 is an upper bound
on {0.9, 0.99, 0.999, . . . }. If there were a smaller upper bound, say 1− ε, then ε
would be infinitesimal : greater than zero, but smaller than 1

n for every natural
number n. Such numbers do not exist:

Theorem 8 (Archimedean Property). For any real ε > 0, there exists a natural
number n > 0 so that ε > 1

n .

Proof. Let S = {n ∈ N : n ≤ 1
ε}. Our goal is to show that S 6= N. If S is

empty, we’re done. Otherwise, by the supremum axiom, S has a least upper
bound supS. By the minimality of supS, there exists s ∈ S with s > (supS)−1.
Then s+1 > supS, so supS is not an upper bound on N. Therefore, S 6= N.

If you’re still in doubt, maybe you’d be convinced by tripling both sides of
the equation 1

3 = 0.333 . . . . If you’re still uncomfortable, maybe it helps to keep
in mind that decimal expansions are just strings, not the numbers themselves.

So is 1 the only two-faced scoundrel in R? Nope, e.g. 97.842 = 97.841999 . . . .
Every real number with a finite decimal expansion has a second decimal expan-
sions. But that’s the only thing that goes wrong.

Proposition 5. Every real number has at most two decimal expansions. A
real number has two decimal expansions if and only if it has a finite decimal
expansion.13

Now we can finally understand |∆|, by representing numbers in ternary, i.e.
base 3. (All of our discussion of decimal expansions applies mutatis mutandis
for any integer base b ≥ 2, or even weirder bases like base 2i where i is the
imaginary unit.) The interval ( 1

3 ,
2
3 ) that we remove in the first iteration of the

construction of ∆ consists of all those real numbers x ∈ [0, 1] whose first ternary

13Note that for this proposition, we count 3 and 3.0 and +003 as all being “the same”
decimal expansion. If you were trying to be careful, you might disallow leading/trailing
zeroes in decimal expansions.
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digit (after the decimal point14) is 1. More precisely, ( 1
3 ,

2
3 ) consists of those real

numbers x ∈ [0, 1] such that in every ternary representation of x, the first digit
is 1. Similarly, in the nth step, we remove those real numbers x such that in
every ternary representation of x, the nth digit is 1. So what we’re left with, ∆,
is the set of real numbers in [0, 1] which can be represented in ternary without
using the digit 1. But of course there are uncountably many such real numbers,
because every sequence of 0s and 2s represents a distinct such real number!

So on the one hand, ∆ is “big:” it is an uncountable set. But on the other
hand, ∆ is “small:” it is nowhere dense, and it has total “length” zero. We’ll
meet ∆ again many times, when these odd properties make it useful.

References

[1] Scott Aaronson. Quantum computing since Democritus. Cambridge: Cam-
bridge University Press, 2013. isbn: 978-0521199568.

[2] Algebra 2, Study Guide and Intervention Workbook. McGraw-Hill Educa-
tion, 2014.

[3] Darius Bacon. Comment on post in “Shtetl-Optimized” blog. url: http:
//www.scottaaronson.com/blog/?p=391#comment-13569.

[4] Can’t Prove a Negative. url: https://www.youtube.com/watch?v=

qWJTUAezxAI.

[5] Galileo Galilei. Discourses and Mathematical Demonstrations Relating to
Two New Sciences. Italy, 1638.
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Chapter 2

Discontinuity

For half a century we have seen a
mass of bizarre functions which
appear to be forced to resemble as
little as possible honest functions
which serve some purpose.

Henri Poincaré [7]

7 Guessing function values

The heroes of this chapter are functions f : R → R, i.e. functions which eat a
number and spit a number back out. You met these functions in school and drew
their graphs. (See Figure 2.1.) Roughly speaking, we say that f is continuous
if you can draw its graph without ever picking up your pencil. (Euler “defined”
continuity by saying that a f is continuous if the graph of f can be “described
by freely leading the hand.” [TODO cite]) So in Figure 2.1, f is continuous but
g isn’t.

Consider the function f : R→ R defined by

f(x) = sin(1/x),

shown in Figure 2.2. (For this section, we adopt the convention sin(1/0) = 0.)
Is f(x) continuous? How about the function

g(x) = x sin(1/x),

shown in Figure 2.3?
Evidently, Euler’s “pencil-never-leaves-the-paper” nonsense is not a precise

enough definition of continuity! The idea of the true definition, first given by
Bolzano [1], is that f is continuous at x if f(x) is exactly what you’d expect it
to be, based on how f behaves near x. Continuous functions are predictable.
These “predictions” are, of course, limits.

35
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x

f(x)

x

g(x)

Figure 2.1: Some boring functions R→ R.

Figure 2.2: The topologist’s sine curve, f(x) = sin(1/x).

Figure 2.3: The topologist’s sine curve after a pliers accident, g(x) = x sin(1/x).
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Figure 2.4: This guy (Bernard Bolzano) invented continuity in 1817. Don’t let
anyone try to tell you that it was Cauchy’s idea.

Definition 10 (Limit of a sequence). Suppose x1, x2, . . . is a sequence of real
numbers, and L is a real number. We say that xn converges to L if for all ε > 0,
there exists an N such that for all n > N ,

|xn − L| < ε.

(See Figure 2.5.) In this situation, we write lim
n→∞

xn = L, or just xn → L.

xn

n

L− ε

L

L+ ε

N

Figure 2.5: The definition of the limit of a sequence. For any error margin ε > 0,
for all sufficiently large n, xn is within ε of L.

Traditionally, real analysis students find the epsilontics involved in the defi-
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nition of a limit to be confusing.1 Maybe a real-life example would help clarify.
You are the pilot of a helicopter carrying secret agents. For their secret spy
mission, it’s important that you hover L feet off the ground. Let xn be the
altitude of the helicopter after you’ve made n adjustments. (It’s a digital heli-
copter.) Then xn → L means that no matter what tolerance ε > 0 your crazy
boss demands of you, by making enough careful adjustments, you can eventually
guarantee that the helicopter is within ε of L and always will be in the future.
Meeting higher standards takes more time, of course: if ε is very small, then N
might have to be very big.

Now let’s move on to defining continuity. You and your spouse want to go on
a trip to the Moon. Your spouse has been obsessively watching the fluctuating
rocket ticket prices, trying to get the best possible deal. “I finally bought the
tickets just now at time t,” your spouse says.

“How much did they end up costing?” you ask.
“You don’t wanna know /” your spouse replies. But you really do wanna

know, so you ask, “Well how much did they cost at time t− 100?”
“Only $200! We should’ve bought them then!”
“How about at time t− 10?”
“They shot up to $1000, which scared me.”
“And at time t− 1?”
“Down to $600. I thought I’d better grab them soon.”
“What about at time t− 0.1?”
“$580.” Having learned the prices at times near t, you can extrapolate to

guess the price at t, but you’d have to assume that the price doesn’t fluctuate
too wildly. You keep needling your spouse, learning the prices at times t− 0.01,
t− 0.001, t− 0.0001, t− 0.00001... You gain more and more confidence in your
extrapolations, because you have to assume less and less about the behavior of
the price. After infinitely many questions, you’ve learned the price at a sequence
of times tn with tn → t, so you just have to extrapolate infinitesimally to infer
the price at t. All you’re assuming now is that the price function is continuous
at t.

Definition 11 (Continuity). We say that f : R → R is continuous at x ∈ R
if for every sequence of inputs x1, x2, . . . converging to x, the corresponding
sequence of outputs f(x1), f(x2), . . . converges to f(x).

To put it another way, f is discontinuous at x if there is some “misleading”
sequence xn → x with f(xn) 6→ f(x). So f(x) = sin(1/x) is discontinuous at 0,
because f(0) = 0, yet there is a sequence xn → 0 so that f(xn) = 1 for every
n. (Figure 2.6.) Remember, though, we declared f(0) = 0 by fiat. Maybe that
was a mistake. Would it be better to choose f(0) = 1? Nope: there’s another
sequence yn → 0 with f(yn) = −1. (Figure 2.7.) So there’s no value of f(0)
that would make f continuous at 0.

1Steven Krantz reports [8] that when asked to give the ε-δ definition of continuity on a
quiz, one student responded: “For every ε > 0 there is a δ > 0 such that you can draw the
graph without lifting your pencil from the paper.”
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On the other hand, g(x) = x sin(1/x) is continuous everywhere. (The only
worrisome spot is x = 0, but observe that |g(x)| ≤ |x|.) Let’s see you draw the
graph of that, Euler! If a function is continuous everywhere, we just say that
it is continuous. In other words, a continuous function is one which commutes
with limits, i.e.

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Figure 2.6: A sequence (in red) showing that f(x) = sin(1/x) is discontinuous at 0.
The sequence suggests that f(0) = 1, but in actuality f(0) = 0.

Figure 2.7: Another sequence showing that f(x) = sin(1/x) is discontinuous at 0.
This time, the sequence suggests that f(0) = −1.

We’ll end this section with a ridiculous theorem about infinitesimal extrap-
olation even in the face of discontinuity, from [10]. Let’s play a game. We
choose a function f : R→ R. Then a point x∗ ∈ R is randomly chosen (drawn
from, say, a standard normal distribution, or whatever.) We reveal to you the
restriction of f to R \ {x∗}. (I.e. you get to know f(x) for every x 6= x∗.) Then
you have to guess what f(x∗) is. You win if you get it right; we win if you get
it wrong.

You’re probably thinking, “I’ll take a limit!” You could find a sequence
xn → x∗ with xn 6= x∗, and evaluate limn→∞ f(xn). If that limit exists, it
seems like the obvious guess. If we choose a continuous f and you follow this
strategy, you’re guaranteed to win.

But we’re not going to make it that easy. We don’t make any promises at
all about f . Can you still force a guaranteed win? Nah, you’re doomed to
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x

f(x)

?

?
?

?

?

x∗

Figure 2.8: This is the sort of picture that you have to deal with in our guessing
game. Every value of the function is revealed except one mysterious point.

occasionally give wrong answers. But, absurdly, you can force an almost sure
win:

Theorem 9. There is a strategy you can follow which ensures that for any
function f we choose, there are only finitely many values of x∗ which lead you
to lose. In particular, no matter which f we choose, your probability of winning
is 100%.

Proof. Define a binary relation ∼ on the set of all functions R→ R by declaring
that f ∼ g if f and g agree on all but finitely many points. This relation ∼ is an
equivalence relation, i.e. it is reflexive (f ∼ f), symmetric (f ∼ g =⇒ g ∼ f)
and transitive (f ∼ g, g ∼ h =⇒ f ∼ h.) Therefore, ∼ partitions the set of
all functions R→ R up into equivalence classes – maximal sets of functions any
two of which agree on all but finitely many points. For each equivalence class
C, choose one representative function fC ∈ C.

When you’re presented with f with its value at x∗ hidden, figure out which
equivalence class f belongs to (call it C.) Then guess that f(x∗) = fC(x∗). For
any f , there are only finitely many x∗ causing you to lose, because f ∼ fC !

That proof was our first2 encounter with the Axiom of Choice (AC), which
is the axiom of set theory which allows the step where we defined fC .

Axiom 9 (Axiom of Choice). Suppose U is a set, F ⊆ P(U), and ∅ 6∈ F . Then
there exists f : F → U such that for every X ∈ F , f(X) ∈ X. (The function f
is called a choice function.)

AC frustrates many people, because it allows for very nonconstructive proofs.
Notice that our proof of Theorem 9 doesn’t actually explain how you should play,
in practice. It just shows that there exists, in the abstract, a strategy with the
desired properties. Some mathematicians prefer to avoid AC when possible, but
sometimes it is unavoidable. AC will be a recurring character in this book. See
[5] for similar, even more ridiculous theorems, also relying heavily on the axiom
of choice.

2Actually, several of the results that we stated without proof in Chapter 1 rely on AC.
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x

f(x)

Figure 2.9: Countably infinitely many discontinuities.

8 The Dirichlet function

Can a function be discontinuous in infinitely many places? Sure, easy peasy:
a “step function” with infinitely many steps, like the floor function. (See Fig-
ure 2.9.) How about a function which has uncountably many discontinuities?
We’ll do even better. Johann Peter Gustav Lejeune Dirichlet (pronounced “deer-
ish lay”) discovered a function which is discontinuous everywhere.

Dirichlet realized he could exploit the fact that in every open interval (a, b) ⊆
R, there are both rational and irrational numbers. (Q and R\Q are both dense.)
The Dirichlet function is another name for χQ, the indicator function of the
rationals. As a reminder, the definition is

χQ(x) =

{
1 if x ∈ Q
0 if x 6∈ Q.

(See Figure 2.10.)

Proposition 6. For every x ∈ R, the Dirichlet function is discontinuous at x.

Proof. There’s a sequence of rational numbers x1, x2, . . . converging to x, and
there’s another sequence of irrational numbers y1, y2, . . . converging to x. By
definition, χQ(xn) = 1 and χQ(yn) = 0, so χQ(xn) and χQ(yn) cannot both
converge to χQ(x).

An oddity of the Dirichlet function is that it is periodic and nonconstant,
yet it has no smallest period: for any rational number r and any real number
x, χQ(x+ r) = χQ(x), so χQ is periodic with period r.

Dirichlet’s idea spawns more monstrosities. Here’s a function which is con-
tinuous at one point, but discontinuous everywhere else:

f(x) =

{
x if x is rational

−x if x is irrational.
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−1 −0.5 0 0.5 1
−1

0

1

2

Figure 2.10: The Dirichlet function.

(See Figure 2.11.) Even better, here’s a function which is differentiable at one
point, but discontinuous everywhere else:

f(x) =

{
x2 if x is rational

0 if x is irrational.

(See Figure 2.12.)
Part of the reason Dirichlet gets his name attached to χQ is that it played

a role in clarifying the concept of a function. Mathematicians were churning
out functions way back in the 1600s in the course of developing calculus. But
shockingly, it seems that the now-standard definition of function that we gave in
Section 1 first appeared in a 1954 book [2]! So how did mathematicians get by
in the intervening several hundred years? Well, they played around with many
different notions of function, of varying degrees of rigor. For the first couple
hundred years, it was popular to think of functions in terms of “formulas”
or “analytic expressions,” whatever that means. E.g. in 1748, Euler gave a
“definition” [4]:

A function of a variable quantity is an analytic expression composed
in any way whatsoever of the variable quantity and numbers or con-
stant quantities.

In 1829 [3], Dirichlet gave χQ as an example of a function with no integral
(see Section ??). Since χQ is not really defined by a formula, some infer that
Dirichlet had internalized the modern concept of a function, for which they
therefore give him credit. But Lakatos correctly points out [9, p 151] that the
credit is undeserved. Dirichlet never gave any such definition.
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−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 2.11: Continuous at precisely one point.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.12: Differentiable at 0, but discontinuous everywhere else.
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9 Conway’s base-13 function

You might remember the Intermediate Value Theorem from calculus class, which
says that if your position is a continuous function of time, then you can’t tele-
port. (See Figures 2.13 and 2.14.)

Theorem 10 (Intermediate Value Theorem). Suppose f is continuous and a <
b. Then for any y between f(a) and f(b), there is an x ∈ (a, b) so that f(x) = y.

The IVT seems pretty obvious, because “no teleporting” sounds almost what
we meant by being continuous! At least, it sounds awfully similar to Euler’s
pencil-never-leaves-the-paper idea of continuity... but remember, that wasn’t
the actual definition of continuity.

Hey, maybe now we can argue that Bolzano’s formal definition of continu-
ity successfully captures Euler’s intuitive idea! A function which satisfies the
conclusion of the IVT is called a Darboux function. That is, f is a Darboux
function if for every a < b and every y between f(a) and f(b), there is an
x ∈ (a, b) so that f(x) = y. Maybe that’s a definition of continuity that Euler
could get behind! The IVT says that every continuous function is Darboux, so
now we just have to prove that every Darboux function is continuous.

There’s one small hitch: that last statement is extremely false! The function
f(x) = sin(1/x) is Darboux, but discontinuous at one point. It gets worse.
We’ll give a function f : R→ R such that for every open interval (a, b), we have
f((a, b)) = R. That is, for every open interval (a, b) and every y ∈ R, there
exists x ∈ (a, b) so that f(x) = y. So f is certainly Darboux, but f is not even
remotely close to continuous. In fact, it’s discontinuous at every point (like the
Dirichlet function, but much crazier.)

Figure 2.15 is a little misleading. The graph of f isn’t all of R2 (it’s a
function, after all!) But every disc in R2 contains a point in the graph of f . In
other words, the graph of f is a dense subset of R2.

So what function has this bizarre property? One example is by British
mathematician John Horton Conway, who (as of 2016) is still alive, unlike the
other mathematicians we’ve encountered. His idea is to represent numbers in
base 13, with these symbols:

0 1 2 3 4 5 6 7 8 9 + − .

Every real number has a unique base-13 expansion with no trailing . symbols

(recall Section 6.) Conway’s base-13 function f is defined with respect to this
expansion as follows.

• For the interesting case, suppose the base-13 expansion of x is of the form
AB, where removing all the circles from the symbols in B yields a sensible
base-10 expansion for a real number y. Then set f(x) = y.

• Otherwise, just set f(x) = 0.
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x

f(x)

a

f(a)

b

f(b)

x

y

Figure 2.13: The intermediate value theorem: in order for a continuous function to
get from one value to another, it must pass through every value in between.

Figure 2.14: When you drive in a car, your distance from Wellington varies contin-
uously. Every point on the Earth’s surface which is 550 miles away from Wellington
is at sea. So by the IVT, if you want to drive from New Zealand to Australia, you’re
going to have to build a car that can drive through water. Or a bridge or something.
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Figure 2.15: A truncated graph of Conway’s base-13 function (in black).

Figure 2.16: A truncated graph of Conway’s base-13 function (in white).

For example, let x be the real number with base-13 expansion

x = − + 6 . 2 4︸ ︷︷ ︸
A

− 3 . 1 4 1 5 9 2 6 . . .︸ ︷︷ ︸
B

Notice that if we start at the − digit, then if we removed the circles, we

would get a string y = −3.1415926 . . . , which is a base-10 expansion for the real
number −π. So we set f(x) = −π. For another example, let x be a real number

with infinitely many + symbols in its base-13 expansion. Then f(x) = 0.

Note that in the definition of f , we require base-10 expansions to start with
either + or −; this ensures that B is unique and hence f is well defined.

Proposition 7. Let f denote Conway’s base-13 function. Then for every a < b
and every y, there is some x such that a < x < b and f(x) = y.

Proof. Start with the base-13 expansion for the midpoint 1
2 (a+ b). If we go out
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1

2
(a+ b) = 0 . 5 − − 1 8

∣∣∣∣∣ 1 0 . 5 9 . . . (base 13)

y = +3.1415926 . . . (base 10)

x = 0 . 5 − − 1 8

∣∣∣∣∣ + 3 . 1 4 . . . (base 13)

Figure 2.17: The proof of Proposition 7. The location of the vertical bar in the
base-13 expansion of 1

2
(a + b) is chosen based on how big b− a is, to make sure that

x ∈ (a, b).

far enough in this base-13 expansion, we can change anything we want and we’ll
still have a number in (a, b). So in particular, we can replace the sequence of
subsequent digits with the circled base-10 expansion of y, to obtain an x ∈ (a, b)
such that f(x) = y. (See Figure 2.17.)

So Darboux functions are a lot more complicated than continuous functions.
In fact, Darboux functions are absurdly “expressive”:

Theorem 11 (Sierpinski). For every function f : R→ R, there are two Darboux
functions g, h so that f = g + h.

Proof. Define an equivalence relation∼ on R by declaring that x ∼ y if x−y ∈ Q.
Let E be the set of equivalence classes. Observe that

|R| = |E ×Q| ≤ |E × E| = |E| ≤ |R|

so |E| = |R|. Partition E up into two disjoint sets E = E1 ∪ E2 so that
|E1| = |E2| = |R|. There are bijections α1 : E1 → R and α2 : E2 → R. Define

g(x) =

{
α1([x]) if [x] ∈ E1

f(x)− α2([x]) if [x] ∈ E2;
(2.1)

h(x) =

{
f(x)− α1([x]) if [x] ∈ E1

α2([x]) if [x] ∈ E2.
(2.2)

(Here, [x] denotes the equivalence class to which x belongs.) By construction,
f = g+h. To show that g and h are Darboux, we’ll show that even better, they
(like Conway’s base-13 function) map every open interval surjectively onto R.
Fix a < b and y. Let [x] = α−1

1 (y). Since Q is dense in R, we can find x′ ∼ x
so that a < x′ < b. Then α(x′) = y, showing that g((a, b)) = R. The same
argument works for h.

What’s the moral of this story? Is there something wrong with Bolzano’s
definition of continuity? Nah. Euler would probably agree that Conway’s base-
13 function does not deserve to be called continuous. The notion of a Darboux
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function is not a reasonable definition of continuity. It’s hard to say what it
means for the graph of a function to be “described by freely leading the hand,”
but it really ought to be more conservative than continuity, not more liberal.

10 Continuity is uncommon

In the previous couple of sections, we saw some really nasty functions with
tons of discontinuities. But in “everyday life,” it seems like we only run into
continuous functions. You might be tempted to infer that most functions are
continuous. But in truth, in the sense of cardinality, the vast majority of func-
tions are discontinuous!

Proposition 8. Let C(R,R) be the set of all continuous functions R → R.
Then |C(R,R)| = |R| = i1. (In contrast, note that the set RR of all functions
R→ R has cardinality i2.)

Proof. Since Q is dense, to specify a continuous function f : R→ R, it suffices
to give the restriction of f to Q. (The value of f at any point x can be recovered
from its values on Q, because there’s a sequence x1, x2, . . . of rational numbers
converging to x, and f(x) = limn→∞ f(xn). See Figure 2.18.) Therefore,

|C(R,R)| ≤ |R||Q| = (2i0)i0 = 2i0·i0 = 2i0 = i1.

Constant functions establish the reverse inequality |C(R,R)| ≥ i1.

Notice that the same basic argument actually shows that the vast majority
of functions have uncountably many discontinuities! (To specify a function f
with countably many discontinuities, just give f �Q along with f �D where D is
the set of x values at which f is discontinuous.)

For whatever reason, this is a recurrent phenomenon in mathematics. Usu-
ally, the vast majority of cases are pathological (in appropriate senses of “vast
majority” and “pathological.”)

x

f(x)

x

f(x)

=⇒

Figure 2.18: To recover the full graph of f given the values of f on Q, just connect
the dots.
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11 Thomae’s function

We’ve seen some very discontinuous functions. But bigger is not always better.
Maybe you’re especially fond of some set D ⊆ R. Like discontinuity connois-
seurs, we can look for a function which is discontinuous exactly at the x values
in D. For now, let’s consider the case D = Q. In the 19th century, the German
mathematician Carl Johannes Thomae devised his namesake function:

f(x) =

{
0 if x is irrational
1
q if x = p

q , with p
q reduced and q > 0.

(2.3)

(See Figure 2.19.)

Proposition 9. Thomae’s function is continuous at irrational x and discon-
tinuous at rational x.

Proof. First, suppose x is rational, so that f(x) > 0. There’s a sequence of
irrational numbers x1, x2, . . . converging to x, but f(xn) = 0 6= f(x), so f is
discontinuous at x.

Conversely, for the harder direction, suppose x is irrational. The intuition
here is to think about rational approximations to x, and notice that close ap-
proximations must have large denominators. So as x′ gets very close to x, f(x′)
really will get very close to 0. Now for the proof:

Consider an arbitrary sequence x1, x2, . . . converging to x, and fix an arbi-
trary ε > 0. There are only finitely many rational numbers within distance 1 of
x with denominator no more than 1

ε , so one of them (call it y) is closest to x. If
n is sufficiently large, the sequence xn is even closer to x than y is, and hence
f(xn) < ε. Since ε was arbitrary, f(xn) → 0, showing that f is continuous at
x.
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Figure 2.19: Thomae’s function (in black).

12 Discontinuities of monotone functions

A function f is monotone increasing if x ≤ x′ implies f(x) ≤ f(x′). Monotone
decreasing is defined in the obvious way, and monotone just means either mono-
tone increasing or monotone decreasing. (See Figure 2.20.) The pathological
functions we’ve seen so far have not been monotone. The following theorem,
due to Darboux despite its name, gives an excuse:

Theorem 12 (Froda’s theorem). Suppose f is monotone. Then f has only
countably many discontinuities.

The key to proving Theorem 12 is a recharacterization of continuity.

Definition 12. Fix f : R → R and c ∈ R. We write lim
x→c

f(x) = L to mean

that for every ε > 0, there exists δ > 0 such that

0 < |x− c| < δ =⇒ |f(x)− L| < ε.

(It’s basically like the definition of the limit of a sequence, with x playing
the role of n and δ playing the role of N .) If you just check, you’ll see that
f is continuous at c if and only if limx→c f(x) = f(c). So now we can divide
the crime of discontinuity into three tiers, depending on how badly limx→c f(x)
fails to equal f(c) (see Figure 2.21):

1. Suppose limx→c f(x) exists, but it doesn’t equal f(c). Then f is charged
with having a removable discontinuity at c. For this minor infraction, f
is required to enroll in a 12-step program, where it learns how to change
its value at c and thereby become continuous.
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x

f(x)

x

g(x)

Figure 2.20: A monotone increasing function on the left and a monotone decreasing
function on the right.

Figure 2.21: Removable discontinuity, jump discontinuity, and essential discontinu-
ity.

2. The left limit, denoted limx→c− f(x) or f(c−), is defined just like limx→c f(x),
except we only pay attention to x < c. Similarly for right limits. Suppose
f(c−) and f(c+) both exist, but they’re not equal, and hence limx→c f(x)
doesn’t exist. Then f is charged with having a jump discontinuity at c.
For this misdemeanor, f is incarcerated in a correctional facility, where
professionals attempt to decrease f(x) for all x on one side of c, thereby
eliminating the jump and restoring continuity.

3. Finally, suppose either f(c−) or f(c+) does not exist. Then f is charged
with having an essential discontinuity at c, which is a felony. Making f
continuous at c would require fundamentally altering f ’s character. So f is
just sentenced to life imprisonment, to protect society from its incorrigible,
deviant behavior.

Proof of Froda’s theorem. Without loss of generality, assume f is monotone in-
creasing. Suppose f is discontinuous at c ∈ R. Monotonicity implies that it’s
a jump discontinuity. Since f(c−) < f(c+), there is some rational number qc
with f(c−) < qc < f(c+). The map c 7→ qc is an injection from the set of
discontinuities of f to Q.

Time for a fun application of Froda’s theorem in the form of a game. We
choose two distinct real numbers x1 < x2 and put each in an unmarked envelope.
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1000000

Figure 2.22: You open the right envelope and see 106. Do you guess that x1 = 106

or x2 = 106? Does 106 seem like a small number, or a big number? What a dumb
question. Surely, all you can do is toss a coin and hope for the best... right? Nope!

x1 x2

Figure 2.23: The strategy which gives you a win probability greater than 50%. The
area of the green region is the probability that y really does fall between x1 and x2,
in which case you win. If the blue or yellow event occurs, you’ll win if and only if you
open the envelope containing x2 or x1, respectively.

We shuffle the envelopes and give them to you. You choose an envelope and
open it, learning the real number inside. You then guess whether you’re looking
at x1 or x2. If you’re right, you win. If you’re wrong, we win. (See Figure 2.22.)

You can trivially achieve a win probability of 50% by just opening a random
envelope and saying “x1.” Bizarrely, you can beat 50%. Here’s what you do:
Pick your own third number y randomly, from (say) a standard normal distri-
bution. Choose a random envelope and open it. Assume that y falls between
x1 and x2, and guess accordingly.

Here’s why it works: Whatever values x1, x2 we choose, there’s a positive
probability that y falls between them. In that case, you’ll win. And in the other
case, it all depends on which envelope you open, so you’ve still got a 50-50 shot.
So overall, your probability of winning is

Pr(win) = Pr(y ∈ (x1, x2)) · 1 + Pr(y 6∈ (x1, x2)) · 0.5
= 0.5 + 0.5 · Pr(y ∈ (x1, x2)) > 0.5.

(See Figure 2.23.)
Admittedly, it’s a bit anticlimactic. The strategy beats 50%, but only by ε,

where we can force ε to be as small as we want by choosing x1 and x2 very close
together. Maybe there’s a cleverer strategy which guarantees you probability of
success at least p where p > 0.5?
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Nope! Here’s why. Fix an arbitrary strategy. Let f(x) be the probability
that you guess “x2” given that you observed the number x in the envelope you
opened. Then your probability of success is

Pr(win) = 0.5 · f(x2) + 0.5 · (1− f(x1))

= 0.5 + 0.5[f(x2)− f(x1)].

If f is not monotone increasing, we can choose x1 < x2 so that f(x1) > f(x2),
putting your win probability below 50%. If f is monotone, then by Froda’s
theorem, it has a point of continuity, so we can force f(x2)−f(x1) to be smaller
than whatever ε > 0 we choose.

How about the converse to Froda’s theorem? Yep, countability characterizes
the sets of discontinuities of monotone functions!

Theorem 13. Suppose D ⊆ R is countable. Then there is some monotone
function f : R→ R which is discontinuous precisely at points in D.

Proof. Say D = {d1, d2, . . . }. Define

f(x) =
∑
di≤x

2−i. (2.4)

(See Figure 2.24.) The sum makes sense, because the terms are all nonnegative,
so the order of summation doesn’t matter. The sum converges to a finite number
between 0 and 1, since

∑∞
i=1 2−i = 1. It’s immediate that f is monotone

increasing; as x gets bigger, we add up more and more things. And of course f
is discontinuous at di ∈ D, because the value jumps up by 2−i there.

Finally, fix x 6∈ D; we must show that limx′→x f(x′) = f(x). Consider an
arbitrary ε > 0. Let N be large enough that

∑∞
i=N 2−i < ε. Let δ be small

enough that the interval [x−δ, x+δ] doesn’t contain any of the first N elements
of D. Then while traversing this interval [x − δ, x + δ], the value of f changes
by at most

∑∞
i=N 2−i < ε as desired.

Notice that this provides another example of a function which is discontinu-
ous at exactly the rationals (like Thomae’s function.) But this time, it’s mono-
tone! We’ll revisit the construction in the proof of Theorem 13 in Section ??
after developing measure theory, and hopefully it will seem more natural then.
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x

f(x)

0

1
4

1
2

3
4

1

Figure 2.24: The function f used to prove Theorem 13 in the case D = N.

13 Discontinuities of indicator functions

For a function f , let D(f) be the set of x values such that f is discontinuous
at x. So far, in every example we’ve seen, D(f) has either been countable or
else has contained an interval. Can D(f) be an uncountable nowhere dense
set? E.g., is there a function with D(f) = ∆, where ∆ is the Cantor set from
Section 6? Yep! Oddly enough, the indicator function χ∆ is an example! This
is in contrast to the situation with Q, whose indicator function is discontinuous
everywhere.

Proposition 10. χ∆ is discontinuous precisely at ∆.

Proof. First, suppose x 6∈ ∆. Remember that to construct ∆, we just removed
a bunch of open intervals from [0, 1], so there is some open interval I such that
x ∈ I and I ∩∆ = ∅. Then χ∆ is 0 on all of I, so it is continuous at x.

Conversely, suppose x ∈ ∆. Remember that ∆ is nowhere dense, so in par-
ticular, ∆ does not contain any intervals. Therefore, there are points arbitrarily
close to x which are not in ∆, where χ∆ is 0. Therefore, χ∆ is discontinuous at
x.

Let’s generalize, so we can understand what just happened. It’s time to
introduce you to topology. The definitions are a bit more intuitive in Rn. For
a point x ∈ Rn and a radius r > 0, let Br(x) denote the open ball of radius r
centered at x.

Definition 13 (Interior, exterior, boundary). Fix a set E ⊆ Rn and a point
x ∈ Rn.

• If there’s some ε > 0 so that Bε(x) ⊆ E, we say that x is an interior point
of E.
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x

y

z

Figure 2.25: Let E denote the gray region. Then x is an interior point of E, y is an
exterior point of E, and z is a boundary point of E.

• If there’s some ε > 0 so that Bε(x) ⊆ Ec, we say that x is an exterior
point of E.

• If x is neither an interior point nor an exterior point of E, we say that x
is a boundary point of E.

(See Figure 2.25.)

The interior of E, denoted int(E), is the set of interior points of E. The
exterior of E is denoted ext(E), and the boundary of E is denoted ∂E. For
example, if I is an interval from 0 to 1, then regardless of which endpoints are
included, we have int(I) = (0, 1), ∂I = {0, 1}, and ext(I) = (−∞, 0)∪ (1,∞). A
couple other examples of boundaries: ∂R = ∅, ∂Q = R, ∂Z = Z, and ∂∆ = ∆.

Proposition 11. For any set E ⊆ R, χE is discontinuous precisely on ∂E.

Proof. A point x is in ∂E if and only if there points arbitrarily close to x in E
and points arbitrarily close to x in Ec.

14 Sets of discontinuities

Does Thomae’s function have a twin? That is, does there exist a function which
is continuous at rational points and discontinuous at irrational points?

As in the last section, D(f) is the set of points where f is discontinuous.
We’ve seen examples of messed up functions with D(f) = R, D(f) = Q, D(f) =
∆, etc. We have not, however, seen any hints about how you might rule out the
possibility of a function f with some given discontinuity set.

In Section 12, we saw a satisfying theorem: There exists a monotone function
f such that D(f) = D if and only if D is countable. In this section, we’ll prove
an analogous theorem without the “monotone” qualifier.

Definition 14. Fix a set E ⊆ Rn. We say that E is closed if ∂E ⊆ E. We say
that E is open if ∂E ⊆ Ec.
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Figure 2.26: Adolf Hitler does not appreciate the terms “open” and “closed” [6].

For example, thankfully, open intervals are open and closed intervals are
closed. An open set is one where each point has some wiggle room. “Fuzzy
set” probably would have been a better term for open sets. The term “closed
set” is more reasonable, because a set E is (topologically) closed if and only if
it is closed under the operation of taking limits. That is, E is closed if and only
if whenever xn is a convergent sequence of points in E, we have limxn ∈ E.
Warning: some sets, like [0, 1), are neither open nor closed, and other sets, like
∅, are both open and closed. (See Figure 2.26.)

If E = ∂E, like the case E = ∆, then there’s a function f with D(f) = E,
namely f = χE . By adapting Dirichlet’s simple trick, we can handle all closed
sets, even the ones with nonempty interiors.

Proposition 12. Suppose E ⊆ R is closed. Then there is some function f with
D(f) = E.

Proof. Define

f(x) =


1 if x ∈ E ∩Q
−1 if x ∈ E \Q
0 if x 6∈ E.

(See Figure 2.27.) This is obviously continuous on x 6∈ E, because there’s a
neighborhood around x on which f is constant. Conversely, suppose x ∈ E, so
that f(x) 6= 0. Let xn, yn be sequences converging to x with xn ∈ Q, yn 6∈ Q.
Then f(xn) is nonnegative and f(yn) is nonpositive, so they can’t both converge
to f(x).

(An alternative way to prove Proposition 12 is to show that every closed
subset of R is the boundary of some set.) How about the converse? Do we
have our characterization – are discontinuity sets precisely closed sets? Nah,
that hypothesis has already been falsified. For example, Q is not closed, but it’s
the discontinuity set of Thomae’s function. The real criterion is slightly more
complicated.
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x

f(x)

Figure 2.27: The function used to prove Proposition 12 in the case E = [−1, 1].

Definition 15. A set E ⊆ R is Fσ if it can be written as a countable union of
closed sets.

(The term Fσ comes from the French words “fermé” and “somme,” meaning
“closed” and “union.”) For example, any countable set, like Q, is Fσ, because
singleton sets are closed. Any closed set, like ∆ or R, is trivially Fσ. The set
R \ {0} is Fσ, because

R \ {0} =
⋃
n∈N

(
−∞,− 1

n

]
∪
[

1

n
,∞
)
.

Notice that every set of discontinuities that we’ve encountered so far is Fσ! This
is no coincidence. Using the basic idea behind Thomae’s function, we can tweak
the proof of Proposition 12 to handle arbitrary Fσ sets.

Theorem 14. Suppose E is Fσ. Then there exists a function f : R → R with
D(f) = E.

Proof. Say E = ∪nEn, where each En is closed. Define

f(x) =


max{ 1

n : x ∈ En} if x ∈ E ∩Q
−max{ 1

n : x ∈ En} if x ∈ E \Q
0 if x 6∈ E.

(See Figure 2.28.) First, suppose x ∈ E. The proof used for Proposition 12 still
applies, showing that f is discontinuous at x. Conversely, suppose x 6∈ E, so
f(x) = 0. Suppose xm → x. Since each En is closed, the sequence xm must
eventually escape En and never return. Once xm has escaped E1, . . . , En, we
have |f(xm)| ≤ 1

n . So f(xm)→ 0, and f is continuous at x.

And the converse is also true: Fσ-ness characterizes discontinuity sets.

Theorem 15. For any function f : R→ R, the set D(f) is Fσ.

Remember how the key to Froda’s theorem was to classify discontinuities
as more or less severe? That’s true here too, in a slightly different sense. The
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3

Figure 2.28: The function used to prove Theorem 14 in the case En = [ 1
n
, 3 − 1

n
],

which is discontinuous precisely on E = (0, 3).

Figure 2.29: The oscillation of f in E is the height of the smallest box that contains
the graph of the restriction of f to E. For example, the oscillation of sin(1/x) in any
interval containing 0 is 2.

diameter of a set E ⊆ R is defined by

diam(E) = sup
x,y∈E

|x− y|.

For a function f : R→ R and a set E ⊆ R, the oscillation of f in E is defined
by ωf (E) = diam(f(E)). (See Figure 2.29.) The oscillation of f at a point x is
defined by

ωf (x) = lim
ε→0

ωf (Bε(x)).

The oscillation of f at x measures the extent to which f is discontinuous at x.
For example, if f has a removable discontinuity at x, then ωf (x) is the distance
from the actual value f(x) to the better value limx′→x f(x′). In particular,
ωf (x) = 0 if and only if f is continuous at x.
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Proof sketch of Theorem 15. We can write

D(f) =
⋃
n∈N

{
x ∈ R : ωf (x) ≥ 1

n

}
. (2.5)

If you just check, you’ll see that {x : ωf (x) ≥ ε} is a closed set.

Theorems 14 and 15 help a lot toward understanding which sets are dis-
continuity sets. For example, the vast majority of sets are not discontinuity
sets.

Proposition 13. Let D denote the set of all Fσ subsets of R. Then |D| = |R|
(which is smaller than |P(R)| by Cantor’s theorem.)

Proof sketch. It turns out that every open set U ⊆ R can be written as a
countable union of disjoint open intervals. A closed set is just a complement
of an open set, so a closed set can be specified by a sequence of real numbers.
Hence, an arbitrary element of D is specified by a sequence of sequences of reals.
Therefore,

|D| ≤ (|R||N|)|N| = |R||N| = |R|.

But the story so far isn’t entirely satisfying, because it’s not obvious how
to identify examples of sets which are not Fσ. Can the set R \Q be written as
a countable union of closed sets? It’s difficult to say! (That’s the thing about
characterization theorems. You’re never really sure when you’re done.) Stay
tuned, we’ll answer this question in Section 15.

15 The Baire category theorem

Our goal in this section is to prove that Thomae’s function does not have a twin.
That is, R \ Q is not Fσ. On the way, we’ll meet the meager sets. Meagerness
might seem like a technical, awkward concept. At the very least, it’s a useful
tool. And meager sets are actually pretty fun to hang out with, once you get
to know them.

In Section 2, we saw Cantor’s famous 1891 diagonal argument, which proved
that R is uncountable. Diagonalization is a great trick to have up your sleeve;
we saw in Section ?? that it can be used to prove that |P(S)| > |S| for every set
S. Historically, diagonalization was not the first technique used to prove that R
is uncountable. Let’s take a look at (a slight variant of) Cantor’s original proof
that R is uncountable, from 1874. The older proof is actually more real-analysis-
ish than the slick diagonalization trick, and if you understand the proof, you’ll
be ready to meet meager sets. A set E ⊆ R is bounded if diam(E) <∞.

Theorem 16 (Cantor’s intersection theorem). Suppose E1 ⊇ E2 ⊇ . . . is a
nested sequence of closed, bounded, nonempty sets. Then ∩nEn 6= ∅.
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Proof. Closedness implies that each En has a minimum xn = minEn. Then xn
is a bounded, monotone increasing sequence, so it has a finite limit x = supn xn.
For any Em, the sequence xn is eventually in Em, so closedness implies that
x ∈ Em. (See Figure 2.31.)

n 0 1
n

Figure 2.30: The hypotheses of Cantor’s intersection theorem are important. On
the left, the nested sequence of closed, nonempty, unbounded sets En = [n,∞) has
empty intersection. On the right, the nested sequence of open, nonempty, bounded
sets En = (0, 1

n
) has empty intersection.

Figure 2.31: The proof of Cantor’s intersection theorem in the case En = [− 1
n
, 1
n

].
The left endpoints limit to 0, the sole element of ∩nEn.

Theorem 17. R is uncountable.

Proof from 1874. Let x1, x2, . . . be an arbitrary sequence. Inductively define
closed, bounded intervals I1 ⊇ I2 ⊇ . . . , with xn 6∈ In. (See Figure 2.32.) By
Cantor’s intersection theorem, there is some x ∈ ∩nIn. Then x 6= xn for every
n. Since the sequence was arbitrary, we can conclude that no sequence exhausts
all of R.

Figure 2.32: Cantor’s original proof that R is uncountable. Having already defined
In−1 (in black), we can find a subinterval In (in blue) which misses the single point
xn (in red.)

Uncountability is a sort of bigness. In 1899, René-Louis Baire realized3 that
by tweaking Cantor’s proof, we can show that R is “big” in a stronger sense

3Dunno if this was actually Baire’s thought process. But it’s a reasonable guess.
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than mere uncountability. Recall from Section 6 that a set E ⊆ R is nowhere
dense if for every open interval I ⊆ R, there is an open subinterval J ⊆ I so
that E ∩ J = ∅. In the proof that R is uncountable, we avoided the sequence
of points x1, x2, . . . , but the argument actually allows us to avoid a sequence
of sets E1, E2, . . . , as long as each En is nowhere dense. This idea led Baire to
classify subsets of R as falling into two “categories.”

Definition 16. A set E ⊆ R is meager, or first category, if it can be written as
a countable union of nowhere dense sets.

You should think of “meager” as meaning “small” (though this is a more
relaxed sense of smallness than nowhere dense or countable.) Sometimes, people
describe meager sets as “thin.” Some examples: Any countable set (like Q) is
meager, because a singleton set {x} is nowhere dense. Any nowhere dense set
(like ∆) is meager. Let ∆ + Q = {δ + q : δ ∈ ∆, q ∈ Q}. (In words, we put
a copy of ∆ at every rational number. This is called the Minkowski sum of ∆
and Q.) Then ∆ + Q is meager, even though it’s uncountable and dense.

Definition 17. A set E ⊆ R is nonmeager, or second category, if it isn’t meager.

Figure 2.33: Baire categories.
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Theorem 18 (The Baire category theorem). R is nonmeager.

Proof. Just repeat the proof that R is uncountable, replacing the sequence
x1, x2, . . . of real numbers with a sequence E1, E2, . . . of nowhere dense sets.

The Baire category theorem opens the door to a host of nonmeager sets. A
comeager set is the complement of a meager set.4 Since the union of two meager
sets is meager, Baire’s category theorem implies that every comeager set, such
as R \Q, is nonmeager.

We promised that all this Baire category stuff was going to help us to show
that R \Q is not Fσ. Maybe Fσ sets are always meager? Nah, that’s not true.
There’s really no reasonable sense in which Fσ sets are “small,” because R itself
is Fσ! The true connection is a little subtler: Fσ sets are either small, or big,
but never medium! Precisely:

Proposition 14. Suppose E is Fσ. Then either E is meager (“E is small”) or
else E contains an interval (“E is big.”) In particular, R \Q is not Fσ.

Proof. Say E = ∪nEn, where every En is closed. If E doesn’t contain an
interval, then each En is nowhere dense (if it were dense in I, it would contain
I by closedness.) So E is meager.

A couple other examples: The set of transcendental numbers is not Fσ. The
set of noncomputable numbers is not Fσ. (∆ + Q)c is not Fσ.
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Chapter 3

Series

On the whole, divergent series are
the work of the devil, and it’s a
shame that one dares base any
demonstration upon them.

Niels Henrik Abel [6], possibly
mistranslated

16 Stacking books

How far over the edge of a table can a stack of books protrude without toppling?
(Figure 3.1)

Table
d

Figure 3.1: The book stacking problem with N = 4. We are interested in maximizing
the overhang d.

To be more precise, we have N identical unit-length books, and in our stack,
no two books may have the same vertical position. How large can the horizontal
distance be between the edge of the table and the right edge of the rightmost
book? For N = 1, you can achieve an overhang of d = 1

2 , but if you push the
book any farther it will fall off the table. (Figure 3.2)

What about N > 1? So far, this is a physics question, but we can turn it
into a math question by trusting Newton: assume that the stack falls if and
only if for some n ≤ N , the center of mass (COM) of the top n books is not
above the surface on which those n books rest. (Figure 3.3)

65
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Table

Figure 3.2: An optimal “stack” of 1 book.

If you’re in the mood to solve this puzzle yourself, close this book now and
ponder. Otherwise, read on for the solution.

Table

◦
×

Table

Figure 3.3: The stack on the left is unbalanced and will topple over. The COM of
the entire stack (marked ×) is over the table like it should be, but the COM of the
top two books (marked ◦) is to the right of the third book. The top two books will
pivot about the top right corner of the third book, as shown on the right. Note: We
assume that the books have uniform density, so the COM of a set of books is just the
average of their spatial centers.

Definition 18. The harmonic stack is defined inductively as follows. To build
a harmonic stack of N books, first place a book on the table poking over the
edge a distance of 1

2N . Then build a harmonic stack of N − 1 books, treating
that first book as if it were the table. For example, the harmonic stack of 4
books is depicted in Figure 3.4.

Table

1
2

1
4

1
6

1
8

Figure 3.4: A harmonic stack of 4 books.

Proposition 15. Harmonic stacks do not topple over.

Proof. We proceed by induction1 on N , the number of books in the stack. The
case N = 1 is trivial. Now consider N > 1. By induction, we can assume that if

1Never seen a proof by induction before? Fear not, this is a great introductory example.
Mathematical induction (not to be confused with “inductive reasoning”) is a technique for
proving that for every N ∈ N, blah blah blah. Here’s the idea: Start by showing that your
theorem is true for N = 1 (this is the “base case.”) Then show that your theorem being true
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you held the bottom book steady, the stack wouldn’t fall over. So we just need
to verify that the COM of the whole stack is over the table. Put the origin at
the lower right corner of the bottom book, so that the horizontal COM of the
top N − 1 books is at most 0 (by induction.) Hence, the horizontal COM of all
the books is at most the contribution from the bottom book, namely − 1

2 ·
1
N .

By our choice of coordinate system, that’s precisely the location of the right
edge of the table. (Figure 3.5)

Table

x

y

×◦

Figure 3.5: The proof of Proposition 15 in the case N = 4. The unshaded books
form a harmonic stack of 3, so we can assume we’ve already proven that they won’t
fall. So their COM (marked ×) is not to the right of the y axis. The shaded book is
sufficiently far to the left that this implies that the COM of the entire stack (marked
◦) is not to the right of the edge of the table.

The overhang achieved by the harmonic stack of N books is

d =
1

2

N∑
n=1

1

n
.

You should recognize the famous harmonic series. (See Figure 3.6.)

Figure 3.6: The harmonic series is not to be confused with the harmonica series.

A series is an expression2 of the form
∑∞
n=1 an, where a1, a2, . . . is a sequence

of real numbers (the terms of the series.) The sequence of partial sums of the

series is the sequence S1, S2, . . . where SN =
∑N
n=1 an. We say that the series

for some value of N makes it also true for N + 1 (this is the “inductive step.”) And then it’s
QED o’clock! The theorem being true for N = 1 makes it true for N = 2, which makes it true
for N = 3, which makes it true for N = 4, etc. Basically, you make your theorem prove itself
– it’s a mathematical bootstrapping maneuver.

2Notice that strictly speaking, two series
∑∞

n=1 an and
∑∞

n=1 bn are equal only if they are
equal termwise, i.e. only if an = bn for every n. But typically, when

∑∞
n=1 an appears in a

mathematical expression, it stands for the value of the series, limN→∞
∑N

n=1 an, rather than
for the series itself. So for example, even though

∑
2−n and

∑
2 ·3−n are two different series,

we still write
∑

2−n =
∑

2 · 3−n = 1.
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converges/diverges if the sequence of partial sums converges/diverges. Series
can diverge because the limit is infinite, e.g. 1+1+1+ · · · , or because the limit
does not exist, e.g. 1− 1 + 1− 1 + · · · .

Theorem 19. The harmonic series
∑∞
n=1

1
n diverges, i.e.

lim
N→∞

N∑
n=1

1

n
=∞.
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Figure 3.7: Other than his proof that the harmonic series diverges, Oresme’s main
contribution to the world may have been the invention of bar charts.

Proof. This proof was discovered by the philosopher Nicole Oresme in the 1300s.
(Figure 3.7) We’ll make the series a little smaller, and show that it still diverges.
Replace each term with the next power of two to appear:

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · ·

≥ 1

1
+

1

2
+

1

4
+

1

4︸ ︷︷ ︸
1/2

+
1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
1/2

+
1

16
+ · · ·

Grouping together like powers of two gives

∞∑
n=1

1

n
≥ 1

1
+

1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ . . .

=
1

1
+

1

2
+

1

2
+

1

2
+

1

2
+ . . .

=∞.

(See Figure 3.8.)
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1
2

1
3

1
4

1
5

Figure 3.8: The proof that 1
2

+ 1
3

+ 1
4

+ . . . diverges. We divide the infinitely many
terms of the series into blocks, and alternatingly color the blocks gray and red. Each
block has only finitely many terms (twice as many as the previous block) yet each
block has a total width of at least 1

2
.

The implications for book stacking are astounding. The overhang of the
harmonic stack of N books limits to ∞ as N → ∞! So for any distance d,

no matter how large – a mile, a million miles, 10101010

miles, anything – you
could, in principle, build a precariously balanced stack of books which hangs a
distance d over the edge of the table! (Figures 3.9, 3.10)

However, the harmonic series diverges slowly. Oresme’s proof that the har-
monic series diverges suggests that

∑N
n=1

1
n scales like logN . In fact, it turns

out that there is a constant γ ≈ 0.58 called the Euler-Mascheroni constant such
that

∑N
n=1

1
n ≈ γ + lnN in the sense that

lim
N→∞

([
N∑
n=1

1

n

]
− lnN

)
= γ.

(Figures 3.11, 3.12).
To paraphrase3 the number theorist Daniel Shanks, lnN goes to infinity

with great dignity. Turning things around, the number of books you’d need to
achieve an overhang of d using a harmonic stack grows very rapidly with d; it
scales like e2d. Even for smallish distances like d = 30, you would need far more
books than can be found on Earth.

So the harmonic stack isn’t as exciting as it seemed. Unfortunately, the
harmonic stack is optimal:

Proposition 16. The maximum overhang that can be achieved by a stack of N
books is that achieved by the harmonic stack of N books.

(The proof, which simply amounts to moving all the centers of mass as far
right as possible, is omitted.) One way to get around this annoyance is to relax
the model by allowing multiple books at each vertical position, side by side.
(Figure 3.13.) It turns out that in this new model, the number of books needed
to reach a distance d scales like d3 instead of like e2d [4]. Much more practical.

Finally, we’ll address two misconceptions about book stacking. Misconcep-
tion one: Some people mistakenly summarize our discussion of harmonic stacks

3The original quote: “log log log x goes to infinity with great dignity.”
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Table

Figure 3.9: A harmonic stack of 52 books, which achieves an overhang of about 2.27.

Figure 3.10: You can get near the theoretical optimal overhang with a deck of 52
playing cards.
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Figure 3.11: Euler discovers the Euler-Mascheroni constant.

Table a

1
2 lnN

N

Figure 3.12: The harmonic stack is shaped like the exponential function (or the
natural log function if your head is sideways.) The distance marked a is approximately
γ/2, where γ is the Euler-Mascheroni constant.
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Table

Figure 3.13: When you allow books to be side by side (unlike our original problem),
new possibilities open up. A harmonic stack of 9 books achieves an overhang of
d ≈ 1.41, but this simple “diamond” stack of 9 books achieves a superior overhang of
d = 1.5.

by saying, “You can build a stack of books that reaches infinitely far away from
the table.” But “infinitely far” is much different than “arbitrarily far”. (What
physics is even supposed to apply to an infinite stack of books?)

Misconception two: Some people mistakenly believe that you can add books
to the top of an ever-growing stack, one by one, in such a way that the overhang
goes to ∞ as time progresses. Our discussion of harmonic stacks did not prove
this claim; notice that to get from a harmonic stack of N books to a harmonic
stack of N + 1 books, you have to add another book to the bottom of the
stack! And in fact, in the model where no two books can have the same vertical
position, the claim is false. Since this point is a little bit subtle, and it isn’t
discussed anywhere outside this book to the best of our knowledge, we give a
fairly detailed statement and proof in Appendix 1.

17 Inserting parentheses and rearranging series

In Oresme’s proof that the harmonic series diverges, there was a step where we
grouped together like powers of two:

1

1
+

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · · = 1

1
+

1

2
+ 2 · 1

4
+ 4 · 1

8
+ . . .

Seems pretty true. But how can we legitimately justify this move? Effectively,
we are inserting parentheses into the series, so that e.g. the two terms 1

4 ,
1
4 in

the original series are replaced with a single term ( 1
4 + 1

4 ) in the new series.
This smells like the familiar associative law for addition, which says that we

can insert and remove parentheses in finite sums without changing the value,
e.g. a + (b + c) = (a + b) + c. Does associativity still hold for infinite sums
(series)?

Nope! For an easy counterexample, let’s look at Grandi’s series,

1− 1 + 1− 1 + 1− 1 + · · · , (3.1)

which diverges since its partial sums form the divergent sequence 1, 0, 1, 0, . . ..
Now insert some parentheses to help it along:

(1− 1) + (1− 1) + (1− 1) + · · · (3.2)
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Figure 3.14: Guido Grandi experiences an identity crisis. Actually, the paradox
didn’t bother Grandi at all. He found it theologically illuminating: “By putting
parentheses into the expression 1− 1 + 1− 1 + . . . in different ways, I can, if I want,
obtain 0 or 1. But then the idea of the creation ex nihilo is perfectly plausible.” [1]

This series is just 0 + 0 + 0 + 0 + · · · , which converges to 0. We can even insert
parentheses a different way and evaluate

1 + (−1 + 1) + (−1 + 1) + · · · , (3.3)

which then converges to 1. (Figure 3.14.) Evidently, we can’t get associativity
for infinite sums in general. Uh oh. Does Oresme’s proof have a gaping hole in
it? It seemed so convincing!

No, not a gaping hole, just a tiny technicality to address. It is true that if∑
an converges, then we can insert parenthesis wherever we want and it will still

converge to the same thing. Proof: Inserting parenthesis amounts to looking at
a subsequence of the sequence of partial sums. (Figure 3.15.) If the sequence
of partial sums converges to begin with, then all subsequences also converge
to the same thing, so we can add parentheses to the series willy-nilly and the
sum won’t change. Adding parentheses can only help the series converge. So
Oresme’s proof works, because4 if the harmonic series did converge, then the
series 1 + 1

2 + 1
2 + 1

2 + . . . would have to converge to something smaller.

Now that we’ve seen that associativity does not generalize to infinite series,
we’ll look at commutativity (a+ b = b+ a). Can we rearrange terms of a series
without affecting the sum?

The answer is, again, no in general. As an example, let’s rearrange the al-

4Another way to justify Oresme’s argument: Every term of the harmonic series is nonnega-
tive, so the sequence of partial sums is monotone. Every subsequence of a monotone sequence
has the same convergence behavior as the original sequence.
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SN

N

1

0

Figure 3.15: The sequence of partial sums for Grandi’s series oscillates and diverges.
But the subsequence consisting of just the blue dots converges to 1, and the subse-
quence consisting of just the black dots converges to 0.

ternating harmonic series,
∑∞
n=1

(−1)n+1

n . Using Taylor series, we can evaluate:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · = log 2.

By the way, that’s a natural logarithm.56 Now let’s rearrange the series like
this:

S = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · ,

which is a pattern of an odd denominator followed by two consecutive even
denominators. This new series does not converge to log 2. If it did, we could
insert parentheses without altering the sum, but:(

1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

[
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

]
=

1

2
log 2.

(Figure 3.16.)
How far can we push this madness? Which series have sums which depend

on the order of summation? And which values can such a series be made to sum
to?

We’d better clarify what it means to “rearrange” the terms of a series. In-
tuitively, we just want to add up the terms in a different order. But of course,

1 +
1

2
+

1

4
+

1

8
+

1

16
+ . . .

5In analysis, when the base of a logarithm isn’t specified, you should assume it’s base e.
This is in contrast to e.g. computer science, where logs are base 2 by default.

6Here’s a joke: What do analysts and number theorists throw into the fireplace? Answer:
Natural logs!
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Bill

//Paycheck

,,Bill

//Paycheck

,,Bill

//Paycheck

,,Bill

//Paycheck

,,Bill

//Paycheck

,,

. .
.

Figure 3.16: You can think about a series such as
∑ (−1)n+1

n
financially. The positive

terms of the series are paychecks and the negative terms are bills. When you get a
paycheck, you immediately deposit it, and when you get a bill, you immediately pay
it off. The series converges to log 2, which means that as time progresses, your bank
account balance will converge to log 2. The paychecks sum to infinite wealth, and the
bills sum to infinite debt, so your bank account balance converging is the result of a
careful balancing act. Each paycheck puts your bank account balance a little above
log 2, and each bill puts your bank account balance a little below log 2. It should
make sense that if you start getting two bills for every paycheck, you won’t be able to
maintain such a high bank account balance.

should not count as a “rearrangement” of the harmonic series, because some
terms of the harmonic series will never appear. We want every term of the
original series to appear exactly once in the new series. To make this precise,
we start with the definition of a permutation of a set S as a bijection σ : S → S.

Definition 19. A rearrangement of the series
∑∞
n=1 an is a series of the form∑∞

n=1 aσ(n), where σ is a permutation of N.

Recall that a convergent series
∑∞
n=1 an is conditionally convergent if

∑∞
n=1 |an| =

∞. For example, the alternating harmonic series is conditionally convergent.

Theorem 20 (Riemann’s rearrangement theorem). Let
∑
an be a conditionally

convergent series. Then for any L ∈ R∪ {±∞}, there is a permutation σ(n) so
that

∑
aσ(n) = L.

Apparently, conditionally convergent series are so weak-willed that they can
be persuaded to converge to anything at all by permuting the terms! Let’s get
started with the proof.

Lemma 1. Suppose
∑∞
n=1 an is conditionally convergent. Then the sum of the

positive terms diverges (to +∞) and the sum of the negative terms diverges (to
−∞).
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+ · · ·

Figure 3.17: The rearrangement of the alternating harmonic series that the proof of
Theorem 20 constructs for the target sum L = 1.2.

Proof. Let a+
n := max{an, 0} and a−n := min{an, 0}, so that

∑
a+
n is the sum

of the positive terms and
∑
a−n is the sum of the negative terms. Since

∑
an

converges, either
∑
a+
n and

∑
a−n both converge, or they both diverge. But they

can’t both converge, because that would imply that
∑
|an| =

∑
a+
n −

∑
a−n

converges.7

Proof sketch of Theorem 20. First suppose L ∈ R. Without loss of generality,
assume L ≥ 0. By the lemma, our positive terms are worth∞ and our negative
terms are worth −∞, so let’s use them! Add a bunch of positive terms until our
partial sum exceeds L. Then throw in some negative terms until we drop below
L, then back to positive terms, etc. We switch to adding terms of the other
sign as soon as we pass L. In this way, we “use up” all the terms in the series,
and the error between our partial sum and L goes to 0 as time progresses, since
an → 0 as n→∞. (Figure 3.17)

Now suppose L = +∞. Then we simply add up a lot of positive terms, then
a negative term, then a lot of positive terms, then a negative term, etc. By the
lemma, we can always add enough positive terms to more than make up for the
negative term. The L = −∞ case is symmetric.

If
∑∞
n=1 |an| converges, we say that

∑∞
n=1 an is absolutely convergent. Here’s

7Here we’re using the easy fact that rearranging a series with nonnegative terms does not
affect the sum.
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a converse to Riemann’s rearrangement theorem. Dirichlet showed that rear-
ranging an absolutely convergent series never changes the sum:

Theorem 21 (Dirichlet). Any rearrangement of an absolutely convergent series
converges to the same thing as the original series.

Proof. Consider a rearrangement
∑∞
n=1 aσ(n) of the absolutely convergent series∑∞

n=1 an = L, and fix ε > 0. The key fact is that by absolute convergence, there
is some N so that

∑∞
n=N+1 |an| ≤ ε. The main weight of the sum is in the first

N terms, so wait for T ∈ N large enough that {1, . . . , N} ⊆ {σ(1), . . . , σ(T )}.
Now apply the triangle inequality a bunch of times:

∣∣∣∣∣L−
T∑
n=1

aσ(n)

∣∣∣∣∣ ≤
∣∣∣∣∣L−

N∑
n=1

an

∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
n≤T

σ(n)>N

aσ(n)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

n=N+1

an

∣∣∣∣∣+
∑
n≤T

σ(n)>N

|aσ(n)|

≤ ε+ ε.

18 A Taylor series that converges to the wrong
function

Remember Maclaurin series from calculus? Here’s the formula:

f(x) =

∞∑
n=0

f (n)(0)

n!
xn. (3.4)

For example, ex =
∑∞
n=0

xn

n! . Here’s a joke: Why does the Maclaurin series fit f
so well? Because it’s Taylor-made! (Recall that a Maclaurin series is a special
kind of Taylor series.)

There are some caveats to Equation (3.4), though. Obviously the formula
only makes sense if f is infinitely differentiable at 0. And sometimes the Taylor
series diverges for some values of x, e.g. 1

1−x =
∑∞
n=0 x

n only works for |x| < 1.
Are there any other caveats? Suppose the Taylor series makes sense and

converges everywhere; then is Equation (3.4) true? Surprisingly, not even close!
There exists an infinitely differentiable f : R→ R whose Taylor series converges
everywhere – to a different function! Such a function f is admittedly a coun-
terexample to our joke, but it’s just a joke. Here’s an example of such a function
(Figure 3.18):

f(x) =

{
e−1/x, x > 0

0, x ≤ 0
.
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Figure 3.18: Plot of e−1/x near zero. It is quite flat at zero but then ever so slowly,
just like a turtle, makes its way up away from the x-axis.

We’ll outline a proof that f is infinitely differentiable at 0, but its Maclaurin
series is just the zero function T (x) ≡ 0, which disagrees with f for all x > 0.
So there isn’t even any neighborhood of 0 in which the Taylor series gives the
right answer!

Since f(x) = 0 for x < 0, the left-derivatives f
(n)
− (0) are all clearly 0. To

compute the right hand limit at zero, we use the following lemma, which can
be proved using induction.

Lemma 2. For x > 0,

f (n)(x) = pn(1/x)e−1/x,

where pn is a polynomial of degree at most 2n.

Using this, the definition of the derivative, and the fact that exponentials

dominate polynomials, one can show that f
(n)
+ (0) = 0, so that f (n)(0) = 0.

Then the Taylor series for f centered at x = 0 is simply

T (x) =

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

0 = 0,

which is certainly convergent for all x ∈ R.

Remark 1. f has a relative

g(x) =

{
e−1/x2

, x 6= 0

0, x = 0

which is even more mischevious: the Maclaurin series of g disagrees with g
everywhere except 0! (Figure 3.19.)

Remark 2. We say h is real analytic if for every a ∈ R, there is some neighbor-
hood of 0 on which the Maclaurin series of h(x − a) converges to h(x − a). So
f and g from this section are examples of functions that are infinitely differen-
tiable, but not real analytic. Maybe you hope these non real analytic functions
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exp(−1/x2)

x

Figure 3.19: The “seagull function” f(x) = e−1/x2

is infinitely differentiable, but all
of its derivatives at 0 are 0, so its Taylor series converges to the function g(x) ≡ 0.

are “rare”. Too bad! Let’s say we start with a function h that is real analytic.
Then add f to it, giving a function h + f which is not real anlaytic. This
shows that of all infinitely differentiable functions, at least as many are not real
analytic as are (in the sense of cardinality). In fact, even the set of infinitely
differentiable but nowhere analytic functions on R is nonmeager in C∞(R)! (See
[3].)

Remark 3. This nonsense disappears in magical complex analysis land. Com-
plex differentiability is equivalent to (complex) analyticity and infinite differen-
tiability. See Section 2.

19 Misshapen series

So far, we’ve investigated standard series, of the form
∑∞
n=1 an. But standards

are for chumps. How about a two-sided series? E.g.

∞∑
n=−∞

2−|n| = · · ·+ 2−2 + 2−1 + 2−0 + 2−1 + 2−2 + · · ·

It seems pretty clear that this series should converge to 1 + 2
∑∞
n=1 2−n = 3.

(Figure 3.20.)

n

1

1−1 2−2 3−3 4−4 5−5 0

∞∑
n=1

2−|n| = 1
1∑

n=−∞
2−|n| = 1

Figure 3.20: Summing a two-sided series.
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How about a two-dimensional series?

2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + · · ·
+ 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + · · ·

+ 2−3 + 2−4 + 2−5 + 2−6 + · · ·
+ 2−4 + 2−5 + 2−6 + · · ·

+ 2−5 + 2−6 + · · ·
+ 2−6 + · · ·

. . .

This one ought to converge to
∑∞
n=1 n2−n = 2. (Figure 3.21.)

n

n2−n

Figure 3.21: Summing a two-dimensional series in your flower garden.

More generally, if we have a countable index set I, we can make sense of the
series via a bijection N → I. As we saw in Section 17, the value of the sum
might depend on which bijection we choose. But there are no discrepancies if
all the terms are positive.

What if we want to sum up uncountably many terms? You might remember
that back in Section 12, we actually found it useful for a proof to use a series
with terms that were not indexed by N. The definition we used there generalizes
nicely to the uncountable case: Suppose I is some arbitrary index set, and for
i ∈ I, ai is a nonnegative real number. Then we define

∑
i∈I

ai = sup

{∑
i∈J

ai : J is a finite subset of I

}
.

For example, if I = N, this definition matches the standard notion of con-
vergence for series. By taking I = R, we can add up all the values of some
nonnegative function R→ R! But uncountable sums are not as exciting as you
might hope:
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Proposition 17. Suppose that for uncountably many i ∈ I, ai > 0. Then∑
i∈I ai =∞.

Proof. For n ∈ N, let En = {i ∈ I : ai >
1
n}, so that ∪nEn is uncountable.

A countable union of finite sets is countable, so some En must be infinite.
Therefore, ∑

i∈I
ai ≥

1

n
+

1

n
+

1

n
+ · · · =∞.

What if our series has negative terms?

· · · − 3− 2− 1− 0 + 1 + 2 + 3 + · · · = ???

Sometimes we can say something about such a series. We can separate our series
S =

∑
i∈I ai into the positive part and the negative part:

S+ =
∑
i∈I
ai≥0

ai, S− =
∑
i∈I
ai≤0

ai.

Both of these series make sense by our earlier definition, and if at most one of
S+ and S− is infinite, then we can define S = S+ + S−. But if S+ = ∞ and
S− = −∞, we just leave S undefined. All of these ideas are generalized by
measure theory and the Lebesgue integral. But that’s a story for Chapter ??.

20 If you torture a series enough, it will con-
verge

Earlier, we saw Grandi’s series S = 1−1+1−1+ · · · , which can be made to sum
to 0 or 1 by judiciously inserting parentheses. Mathematicians are sane, clear-
thinking folk, so of course, all the great mathematicians of history understood
that Grandi’s series obviously diverges, and thus it simply doesn’t have a sum:
it’s not 0, it’s not 1, and it’s certainly not anything else... right?

(Leibniz, 1674 [5]) 1
1+1 = 1

1 −
1

1+1 . Ergo 1
1+1 = 1− 1 + 1− 1 + 1− 1

etc.

(Leibniz, 1713 [7]) ...And now since from that one [Gerolamo Car-
dano] who wrote of the values of the gambling games, it had been
shown that when the average between two even quantities is found
by calculation, the arithmetic mean ought to be found, which is one-
half of the sum, and in such a way this nature of things attends to
the same law of righteousness; hence although 1− 1 + 1− 1 + 1− 1+
etc is 0 in the case with an finite even number of elements, in the
case with a finite odd number of elements it is equal to 1; it follows
that in the case with both sides vanishing into multitude of infinite
elements, where the law is confounded by the presence of both evens
and odds, and there is such a great sum on both sides, that 0+1

2 = 1
2

emerges, which is what has been proposed.
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“Gambling games”? “Law of righteousness”? What was Leibniz smoking? But
he’s in good company!

(Euler, 1760 [2]) For if in a calculation I arrive at this series 1 −
1 + 1 − 1 + 1 − 1 etc. and if in its place I substitute 1/2, no one
will rightly impute to me an error, which however everyone would
do had I put some other number in the place of this series. Whence
no doubt can remain that in fact the series 1 − 1 + 1 − 1 + 1 − 1
+ etc. and the fraction 1/2 are equivalent quantities and that it is
always permitted to substitute one for the other without error.

Other giants of mathematics (e.g. Bernoulli, de Morgan) expressed similar
confidence that Grandi’s series sums to 1/2. Were they all crazy or stupid?
It’s more reasonable to be charitable. These mathematicians must have had
some different definitions in mind for how infinite sums work. According to the
standard definitions, it’s not true that Grandi’s series sums to 1/2... but let’s
make it true!

Definition 20. Suppose a series
∑∞
n=1 an has partial sums S1, S2, . . . . The

Cesàro sum of the series is the limit of the arithmetic mean of the first m
partial sums:

C = lim
m→∞

∑m
N=1 SN
m

.

Proposition 18. If
∑∞
n=1 an = L ∈ R, then the Cesàro sum of

∑∞
n=1 an is L.

Proof. Fix an arbitrary ε > 0. Choose N0 large enough so that for every
N > N0, |SN − L| < ε. Then apply the triangle inequality a few times:∣∣∣∣∑m

N=1 SN
m

− L
∣∣∣∣ ≤

∣∣∣∣∣N0

m
L−

∑N0

N=1 SN
m

∣∣∣∣∣+

∣∣∣∣∣m−N0

m
L−

∑m
N=N0+1 SN

m

∣∣∣∣∣
≤ 1

m
· (no m dependence) +

m−N0

m
ε

≤ 2ε for m sufficiently large.

So Cesàro provides the right answer when you give him a convergent series.
But sometimes, he even gives an answer if you give him a divergent series! The
partial sums of Grandi’s series are 1, 0, 1, 0, 1, 0, . . . , hence the Cesàro sum of
the series is 1

2 . (See Figure 3.22 for another example.)
Does every series have a Cesàro sum? Nah, that’s too good to be true.

Consider the series

1− 2 + 3− 4 + 5− 6 + 7− 8 + . . .

Obviously this series diverges, but Euler claimed that this series sums to 1
4 for

some reason. Unfortunately, the arithmetic mean of the first m partial sums is{
dm/2e
m if m is odd

0 otherwise.
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Figure 3.22: The series
∑∞

n=0 sin(n). The top graph shows the terms of the series.
The middle graph shows the partial sums of the series. The bottom graph shows
the arithmetic means of the partial sums of the series. As the images suggest, the
sequence of partial sums oscillates and hence the series diverges, but the Cesàro sum
of the series is 1

2
cot 1

2
≈ 0.915.
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When m is large, this oscillates between 0 and approximately 1/2, so it does
not converge. Hence, the series has no Cesàro sum. We’ll need to be cleverer to
justify Euler’s claim.

The oscillation behavior we’re trying to deal with is suspiciously similar to
the behavior of the partial sums of Grandi’s series. It seems like we just need to
somehow “Cesàro-ify” the series again! To see how to properly do that, define

ek =

{
1 if k = 1

0 otherwise.

Then for a series
∑∞
k=1 ak, the nth partial sum is

Sn =

∑n
k=1 ak∑n
k=1 ek

,

and the arithmetic mean of the first m partial sums is

Mm =

∑m
n=1

∑n
k=1 ak∑m

n=1

∑n
k=1 ek

.

Hopefully it’s clear how to generalize. Fix an integer p ≥ 0 which tells how
many times to Cesàro-ify, and fix a series

∑∞
k=1 ak. Define

Cpn =

∑n
n0=1

∑n0

n1=1

∑n1

n2=1 · · ·
∑np−1

np=1 anp∑n
n0=1

∑n0

n1=1

∑n1

n2=1 · · ·
∑np−1

np=1 enp

.

For example, C0
n is the nth partial sum, and C1

n is the mean of the first n partial
sums. We define the p-Cesàro sum of the series to be limn→∞ Cpn. For example,
the 0-Cesàro sum is the standard sum, and the 1-Cesàro sum is the original
Cesàro sum.

Now we can generalize our earlier claim that Cesàro gives the right answer
for convergent series. As p gets larger, Cesàro never goes back on his word:

Theorem 22. If the p-Cesàro sum of a series is L, then the (p + 1)-Cesàro
sum of the series is also L.

(We omit the proof.) If you’re bored, you can check that 1 − 2 + 3 − 4 +
5 − 6 + · · · has a 2-Cesàro sum, namely 1

4 . (Figure 3.23) This isn’t exactly
the calculation that Euler performed to arrive at the sum 1

4 , but it’s also not a
coincidence.

You might hope that by considering sufficiently large p, we can force every
series to converge. But that’s still too good to be true. For example, Theorem 22
works even for L ∈ {±∞}, so Cesàro is worthless for dealing with series that
diverge to ±∞.

In light of this defect, let’s look at another (fishier) way to force divergent
series to converge. What is 1 + 2 + 4 + 8 + 16 + · · · ? Obviously ∞, but that
answer is unacceptable. Recall the formula for geometric series: if |x| < 1, then

1 + x+ x2 + x3 + · · · = 1

1− x
.
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15

15

1/2

1/4

Figure 3.23: The series 1− 2 + 3− 4 + 5− 6 + · · · . The top graph shows the terms
of the series. The next three graphs show C0

n, C1
n, and C2

n.
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However, the right side of the equation, 1
1−x , makes sense for any x 6= 1. By

plugging in x = 2, we arrive at the fun claim that

1 + 2 + 4 + 8 + 16 + · · · = −1.

And by plugging in x = −1, we recover our earlier calculation that Grandi’s
series sums to 1/2. For another example of this fishy calculation technique, let’s
look at the following “sum” that many people try to assert:

1+2 + 3 + 4 + · · · = − 1

12
(?!?)

Again, keep in mind that with respect to standard summation, this formula is
just plain false. But we can make the formula seem true, just like we did for
1 + 2 + 4 + 8 + · · · = −1. We know that 1 + 2 + 3 + 4 + · · · in reality diverges,
but we can multiply each term by a damping factor to make a convergent
series, and then maybe try to take a limit. So instead of

∑∞
n=1 n, we take

S(x) :=
∑∞
n=1 nx

n−1, where we imagine that x is small so xn−1 gets smaller
and smaller as n increases. Eventually, the plan is to plug in x = 1 to get the
value of

∑∞
n=1 n. Observe

S(x) = 1 + 2x+ 3x2 + 4x3 + · · · = d

dx

[
x+ x2 + x3 + · · ·

]
=

d

dx

x

1− x
=

1

(1− x)2
.

We can’t get a meaningful expression by evaluating x = 1 here unfortunately.
But we can clear some denominators and verify the identity

1

(1 + x)2
= S(x)− 4xS(x2),

at least for x where S(x) and S(x2) are defined. But if we use this equation
with x = 1, we obtain

S(1) = 1 + 2 + 3 + 4 + · · · = − 1

12
.

Yay! So this fishy calculation technique, where you find a formula that works
for some numbers and then just boldly plug in other numbers, seems to be
very powerful. You have to be careful though, because you can get conflicting
answers. For example, Callet noticed that for |x| < 1, we have

1− x2 + x3 − x5 + x6 − x8 + x9 − x11 + x12 − · · · = 1 + x

1 + x+ x2
.
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Again, the right-hand side makes sense for other values of x, so we can plug in
x = 1 to find this time that Grandi’s series sums to 2/3!

There’s a way to actually make rigorous mathematical sense of this fishy
calculation technique. But it involves complex numbers, so we put it in Ap-
pendix 2.
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TO BE CONTINUED...
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Appendix A

Omitted Details

1 Adding books to the top of a stack

This section elaborates on the last paragraph of Section ??.

Definition 21. A plan is a sequence x1, x2, . . . of real numbers. (Think of xn
as the horizontal position of the center of book n, where the origin is at the
upper right corner of the table. Remember, no two books can have the same
vertical position.)

Definition 22. A plan x1, x2, . . . is sound if for every N ∈ N, if you were to
place N books at positions x1, . . . , xN (with book 1 on the bottom and book N
on the top), then that stack of N books would not topple. (In other words, if
you were to build an ever-growing stack by adding books to the top one by one
in positions x1, x2, . . . , then the stack would never topple.) See Figure A.2.

Proposition 19. Suppose x1, x2, . . . is a sound plan. Then for every n, xn ≤ 1
2 .

So the overhang of the stack always satisfies d ≤ 1.

Table

...

Figure A.1: The plan 0,− 1
2
, 0, 0, 0, 0, 0, . . . is sound. It achieves an overhang of

d = 1
2
.

91
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Table

...

Figure A.2: The plan − 3
8
,− 5

24
, 0, 1

2
, 0, 0, 0, 0, . . . is sound. It achieves an overhang

of d = 1, showing that Proposition 19 is tight.

Proof. Suppose x1, x2, . . . is a plan with xn = 1
2 + ε for some n ∈ N and some

ε > 0. We’ll show that the plan is not sound. For each N > n, define

aN =
1

N

N∑
i=1

xi

bN =
1

N − n

N∑
i=n+1

xi.

(So aN is the COM of books 1, . . . , N , and bN is the COM of books n+1, . . . , N .)
Then we have

aN =
(N − n)bN +

∑n
i=1 xi

N

= bN −
n

N
bN +

1

N

n∑
i=1

xi.

First, suppose that |bN − xn| > 1
2 for some N . Then when the stack has N

books, it will topple over, pivoting about one of the top corners of book n.
Therefore, assume instead that |bN − xn| ≤ 1

2 for all N . Then n
N bN → 0 as

N →∞, and of course 1
N

∑n
i=1 xi → 0 as N →∞, so |aN−bN | → 0 as N →∞.

Choose N large enough that |aN − bN | < ε. Then by the triangle inequality,
|aN − xn| < 1

2 + ε, so aN > 0. Therefore, when the stack has N books, it will
topple, pivoting about the upper right corner of the table.

2 Analytic continuation

This section elaborates on the last paragraph of Section 20. In particular, we
will investigate another way to argue that 1 + 2 + 3 + · · · = − 1

12 .

! WARNING:
COMPLEX ANALYSIS IN USE
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We are going to need analytic continuation from complex analysis. If you’re
already familiar with this, feel free to skip a few paragraphs down to the part
about the Riemann zeta function. The functions we will be thinking about in
this section eat complex numbers and spit out more complex numbers. In other
words, they map Ω → C, where Ω ⊆ C is an open subset of C. For example,
the functions f(z) = z or g(z) = z2 are fine examples C → C. The notion of
(complex-)differentiability looks basically the same as in the real case: we say
f is complex-differentiable or holomorphic at z0 ∈ Ω if

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

exists. It looks the same as the real case, except that h 6= 0 is allowed to take
complex values.1 We’ll find out later, though, that complex-differentiability
seems a much stronger condition than the usual real-valued differentiability.

The idea of analytic continuation is to take a (complex-)differentiable func-
tion defined on some set Ω ⊂ C and try to extend it nicely to a larger set Ω′.
For example, f(z) :=

∑∞
n=0 z

n is equal to 1
1−z for |z| < 1 but is not defined for

|z| > 1. But the honest function z 7→ 1
1−z , which agrees with f on the unit disk

|z| < 1, is defined and complex-differentiable on the larger set C \ {1}. We say
that z 7→ 1

1−z is an analytic continuation of f .

Remark 4. You may recall that an analytic function is one that is locally given
by a convergent power series. In real analysis, there are examples of infinitely
differentiable functions that are not (real-)analytic (Section 18). But in complex
analysis, it turns out that one-time differentiable, infinitely differentiable, and
analytic are all equivalent.

differentiable infinitely differentiable analytic

complex
magic

complex
magic

Figure A.3: The rightward arrows are true in complex analysis, but not in real
analysis. Complex differentiability is so strong that it implies infinite differentiability
and analyticity.

Analytic continuation is incredibly useful because of the uniqueness of ana-
lytic functions:

Theorem 23 (uniqueness of analytic functions). If f, g : Ω → C are complex-
differentiable on a connected open set Ω ⊆ C and f(z) = g(z) for all z in a
sequence of distinct points with an accumulation point, then f(z) = g(z) on all
of Ω.

1We do also require that z0 + h ∈ Ω.
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This is an amazing result! It says there is only one analytic continuation: if
f and g agree on some smaller set S with an accumulation point (for example,
any non-empty open set), then they must be equal on the entire set Ω. So we
can talk about the analytic continuation. Complex analysis is of course magic.
For more magic, see a complex analysis book like [2].

The Riemann zeta function ζ(s) :=
∑∞
n=1

1
ns is especially important in an-

alytic number theory. This particular expression, as an infinite sum, is defined
for Re s > 1, which is where it converges. However, we would like to analytically
continue it to all of C \ {1}. While we won’t prove the analytic continuation
here, we’ll try to provide some ideas from a proof.

The Riemann zeta function has a friend called the Gamma function,

Γ(s) :=

∫ ∞
0

e−tts−1 dt, Re s > 0.

Gamma may look a bit scary, but by integrating by parts, we can verify the
functional equation Γ(s+1) = sΓ(s) and conclude that Γ(n+1) = n! for n ∈ N.
(And yes, that is a factorial, not just an exclamation point.) Although the
integral expression for Γ(s) is only useful for Re s > 0, we can use the functional
equation to analytically continue it. We simply copy-paste everything to the left
one unit at a time. The only ugly part is the singularity at s = 0, which gets
translated to all the negative integers.

-4 -2 2 4

-10

-5

5

10

15

20

25

Figure A.4: A plot of Γ(s) along the real line. It matches the factorial function
(shifted over by one) for n ∈ N. The pole at zero is copied over to all the negative
integers.

Gamma plays nicely with Riemann zeta. One way to prove the analytic
continuation of Riemann zeta is to form the auxiliary function

ξ(s) := π−s/2Γ(s/2)ζ(s),
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and then prove analytic continuation of ξ. This involves the Poisson summation
formula and Theta series θ(t) :=

∑
k∈Z e

−tπk2 along with some sums, integrals,
and computations. The end result is an integral formula for ξ that works for
s ∈ C, s 6= 0, 1. Then we get a formula for ζ by dividing by Γ.

Theorem 24 (analytic continuation of Riemann zeta). ζ(s) =
∑∞
n=1

1
ns , Re(s) >

1, extends to a meromorphic function on C with only a simple pole at s = 1.

We threw in the word “meromorphic”, but that just means analytic except
for some isolated poles, like the one at s = 1. With analytic continuation of
ζ, we can have fun assigning values to sums like ζ(−1) = 1 + 2 + 3 + · · · . By
comparing poles and residues of Γ and ζ, it turns out

1 + 2 + 3 + · · · “ = ”ζ(−1) = − 1

12

and 1 + 1 + 1 + · · · “ = ”ζ(0) = −1

2
.

Tada! Complex analysis is magic.
References: complex analysis [2], analytic continuation of the Riemann zeta

function [1]
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